

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Scriptharness

Scriptharness is a framework for writing scripts.  There are three core principles: full logging, flexible configuration, and modular actions.  The goal of full logging is to be able to debug problems purely through the log.  The goal of flexible configuration is to make each script useful in a variety of contexts and environments.  The goals of modular actions are a) faster development feedback loops and b) different workflows for different usage requirements.


Full logging

Many scripts log.  However, logging can happen sporadically, and it’s generally acceptable to run a number of actions silently (e.g., os.chdir() will happily change directories with no indication in the log).  In full logging, the goal is to be able to debug bustage purely through the log.

At the outset, the user can add a generic logging wrapper to any method with minimal fuss.  As scriptharness matures, there will be more customized wrappers to use as drop-in replacements for previously-non-logging methods.




Flexible configuration

Many scripts use some sort of configuration, whether hardcoded, in a file, or through the command line.  A family of scripts written by the same author(s) may have similar configuration options and patterns, but often times they vary wildly from script to script.

By offering a standard way of accepting configuration options, and then exporting that config to a file for later debugging or replication, scriptharness makes things a bit neater and cleaner and more familiar between scripts.

By either disallowing runtime configuration changes, or by explicitly logging them, scriptharness removes some of the guesswork when debugging bustage.




Modular actions

Scriptharness actions allow for:


	faster development feedback loops.  No need to rerun the entirety of a long-running script when trying to debug a single action inside that script.

	different workflows for different usage requirements, such as running standalone versus running in cloud infrastructure



This is in the same spirit of other frameworks that allow for discrete targets, tasks, or actions: make, maven, ansible, and many more.




Running unit tests


Linux and OS X

# By default, this will look for python 2.7 + 3.{3,4,5}.
# You can run |tox -e ENV| to run a specific env, e.g. |tox -e py27|
pip install tox
tox
# alternately, ./run_tests.sh








Windows

# By default, this will look for python 2.7 + 3.4
# You can run |tox -c tox_win.ini -e ENV| to run a specific env, e.g. |tox -c tox_win.ini -e py27|
pip install tox
tox -c win.ini






Table of Contents


	Quickstart
	output

	--actions

	--list-actions

	--dump-config

	--help





	Enabling and Disabling Actions
	--action-group

	--actions

	--add-actions

	--skip-actions





	Configuration
	Configuration Overview

	ConfigTemplates

	LoggingDict and ReadOnlyDict





	Scripts and Actions
	Scripts and Phases

	Contexts

	Actions





	Commands
	Command and run()

	ParsedCommand and parse()

	ErrorLists and OutputParser

	OutputBuffer and context lines

	Output, get_output(), and get_text_output()





	scriptharness package
	Submodules
	scriptharness.actions module

	scriptharness.commands module

	scriptharness.config module

	scriptharness.errorlists module

	scriptharness.exceptions module

	scriptharness.log module

	scriptharness.os module

	scriptharness.process module

	scriptharness.script module

	scriptharness.status module

	scriptharness.structures module

	scriptharness.unicode module

	scriptharness.version module





	Module contents





	Scriptharness 0.2.0 Release Notes
	Highlights

	What’s New

	Historical Release Notes
	Scriptharness 0.2.0 Release Notes

	Scriptharness 0.1.0 Release Notes









	Scriptharness
	Full logging

	Flexible configuration

	Modular actions

	Running unit tests
	Linux and OS X

	Windows




















Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Quickstart

Here’s an example script, quickstart.py [https://github.com/scriptharness/python-scriptharness/blob/master/examples/quickstart.py].

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# This file is formatted slightly differently for readability in ReadTheDocs.
"""python-scriptharness quickstart example.

This file can be found in the examples/ directory of the source at
https://github.com/scriptharness/python-scriptharness
"""
from __future__ import absolute_import, division, print_function, \
                       unicode_literals
import scriptharness
import scriptharness.commands

"""First, define functions for all actions.  Each action MUST have a function
defined.  The function should be named the same as the action.  (If the
action has a `-` in it, replace it with an `_`; e.g. an action named
`upload-to-s3` would call the `upload_to_s3()` function.  Each action function
will take a single argument, `context`.

Each action function should be idempotent, and able to run standalone.
In this example, `package` may require that the steps in `build` ran at
some point before `package` is run, but we can't assume that happened in
the same script run.  It could have happened yesterday, or three weeks ago,
and `package` should still be able to run.  If you need to save state
between actions, consider saving state to disk.
"""
def clobber(context):
    """Clobber the source"""
    context.logger.info("log message from clobber")

def pull(context):
    """Pull source"""
    context.logger.info("log message from pull")

def build(context):
    """Build source"""
    context.logger.info("log message from build")
    if context.config.get("new_argument"):
        context.logger.info("new_argument is set to %s",
                            context_config['new_argument'])

def package(context):
    """Package source"""
    context.logger.info("log message from package")
    scriptharness.commands.run(
        ['python', '-c',
         "from __future__ import print_function; print('hello world!')"]
    )

def upload(context):
    """Upload packages"""
    context.logger.info("log message from upload")

def notify(context):
    """Notify watchers"""
    context.logger.info("log message from notify")


if __name__ == '__main__':
    """Enable logging to screen + artifacts/log.txt.  Not required, but
    without it the script will run silently.
    """
    scriptharness.prepare_simple_logging("artifacts/log.txt")

    """Define actions.  All six actions are available to run, but if the
    script is run without any action commandline options, only the
    enabled actions will run.

    If default_actions is specified, it MUST be a subset of all_actions
    (the first list), and any actions in default_actions will be enabled
    by default (the others will be disabled).  If default_actions isn't
    specified, all the actions are enabled.

    Each action MUST have a function defined (see above).
    """
    actions = scriptharness.get_actions_from_list(
        ["clobber", "pull", "build", "package", "upload", "notify"],
        default_actions=["pull", "build", "package"]
    )

    """Create a commandline argument parser, with default scriptharness
    argument options pre-populated.
    """
    template = scriptharness.get_config_template(all_actions=actions)

    """Add new commandline argument(s)
    https://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser.add_argument
    """
    template.add_argument("--new-argument", action='store',
                          help="help message for --new-argument")

    """Create the Script object.  If ``get_script()`` is called a second time,
    it will return the same-named script object.  (`name` in get_script()
    defaults to "root".  We'll explore running multiple Script objects within
    the same script in the not-distant future.)

    When this Script object is created, it will parse all commandline
    arguments sent to the script.  So it doesn't matter that this script
    (quickstart.py) didn't have the --new-argument option until one line
    above; the Script object will parse it and store the new_argument
    value in its config.
    """
    script = scriptharness.get_script(actions=actions, template=template)

    """This will run the script.
    Essentially, it will go through the list of actions, and if the action
    is enabled, it will run the associated function.
    """
    script.run()






output

If you run this without any arguments, you might get output like this:

$ ./quickstart.py
00:00:00     INFO - Starting at 2015-06-21 00:00 PDT.
00:00:00     INFO - Enabled actions:
00:00:00     INFO -  pull, build, package
00:00:00     INFO - {'new_argument': None,
00:00:00     INFO -  'scriptharness_artifact_dir': '/src/python-scriptharness/docs/artifacts',
00:00:00     INFO -  'scriptharness_base_dir': '/src/python-scriptharness/docs',
00:00:00     INFO -  'scriptharness_work_dir': '/src/python-scriptharness/docs/build'}
00:00:00     INFO - Creating directory /src/python-scriptharness/docs/artifacts
00:00:00     INFO - Already exists.
00:00:00     INFO - ### Skipping action clobber
00:00:00     INFO - ### Running action pull
00:00:00     INFO - log message from pull
00:00:00     INFO - ### Action pull: finished successfully
00:00:00     INFO - ### Running action build
00:00:00     INFO - log message from build
00:00:00     INFO - ### Action build: finished successfully
00:00:00     INFO - ### Running action package
00:00:00     INFO - log message from package
00:00:00     INFO - Running command: ['python', '-c', "from __future__ import print_function; print('hello world!')"]
00:00:00     INFO - Copy/paste: python -c "from __future__ import print_function; print('hello world!')"
00:00:00     INFO -  hello world!
00:00:00     INFO - ### Action package: finished successfully
00:00:00     INFO - ### Skipping action upload
00:00:00     INFO - ### Skipping action notify
00:00:00     INFO - Done.





First, it announced it’s starting the script.  Next, it outputs the running
config, also saving it to the file artifacts/localconfig.json.  Then it
logs each action as it runs enabled actions and skips disabled actions.
Finally, it announces ‘Done.’.

The same output is written to the file artifacts/log.txt.




--actions

You can change which actions are run via the --actions option:

$ ./quickstart.py --actions package upload notify
00:00:05     INFO - Starting at 2015-06-21 00:00 PDT.
00:00:05     INFO - Enabled actions:
00:00:05     INFO -  package, upload, notify
00:00:05     INFO - {'new_argument': None,
00:00:05     INFO -  'scriptharness_artifact_dir': '/src/python-scriptharness/docs/artifacts',
00:00:05     INFO -  'scriptharness_base_dir': '/src/python-scriptharness/docs',
00:00:05     INFO -  'scriptharness_work_dir': '/src/python-scriptharness/docs/build'}
00:00:05     INFO - Creating directory /src/python-scriptharness/docs/artifacts
00:00:05     INFO - Already exists.
00:00:05     INFO - ### Skipping action clobber
00:00:05     INFO - ### Skipping action pull
00:00:05     INFO - ### Skipping action build
00:00:05     INFO - ### Running action package
00:00:05     INFO - log message from package
00:00:05     INFO - Running command: ['python', '-c', "from __future__ import print_function; print('hello world!')"]
00:00:05     INFO - Copy/paste: python -c "from __future__ import print_function; print('hello world!')"
00:00:05     INFO -  hello world!
00:00:05     INFO - ### Action package: finished successfully
00:00:05     INFO - ### Running action upload
00:00:05     INFO - log message from upload
00:00:05     INFO - ### Action upload: finished successfully
00:00:05     INFO - ### Running action notify
00:00:05     INFO - log message from notify
00:00:05     INFO - ### Action notify: finished successfully
00:00:05     INFO - Done.





For more, see Enabling and Disabling Actions.




--list-actions

If you want to list which actions are available, and which are enabled by
default, use the --list-actions option:

$ ./quickstart.py --list-actions
  clobber ['all']
* pull ['all']
* build ['all']
* package ['all']
  upload ['all']
  notify ['all']








--dump-config

You can change the new_argument value in the config via the
--new-argument option that the script added.  Also, if you just want to
see what the config is without running anything, you can use the
--dump-config option:

$ ./quickstart.py --new-argument foo --dump-config
00:00:14     INFO - Dumping config:
00:00:14     INFO - {'new_argument': 'foo',
00:00:14     INFO -  'scriptharness_artifact_dir': '/src/python-scriptharness/docs/artifacts',
00:00:14     INFO -  'scriptharness_base_dir': '/src/python-scriptharness/docs',
00:00:14     INFO -  'scriptharness_work_dir': '/src/python-scriptharness/docs/build'}
00:00:14     INFO - Creating directory /src/python-scriptharness/docs/artifacts
00:00:14     INFO - Already exists.








--help

You can always use the --help option:

$ ./quickstart.py --help
usage: quickstart.py [-h] [--opt-config-file CONFIG_FILE]
                     [--config-file CONFIG_FILE] [--dump-config]
                     [--actions ACTION [ACTION ...]]
                     [--skip-actions ACTION [ACTION ...]]
                     [--add-actions ACTION [ACTION ...]] [--list-actions]
                     [--action-group {none,all}] [--new-argument NEW_ARGUMENT]

optional arguments:
  -h, --help            show this help message and exit
  --opt-config-file CONFIG_FILE, --opt-cfg CONFIG_FILE
                        Specify optional config files/urls
  --config-file CONFIG_FILE, --cfg CONFIG_FILE, -c CONFIG_FILE
                        Specify required config files/urls
  --dump-config         Log the built configuration and exit.
  --actions ACTION [ACTION ...]
                        Specify the actions to run.
  --skip-actions ACTION [ACTION ...]
                        Specify the actions to skip.
  --add-actions ACTION [ACTION ...]
                        Specify the actions to add to the default set.
  --list-actions        List all actions (default prepended with '*') and
                        exit.
  --action-group {none,all}
                        Specify the action group to use.
  --new-argument NEW_ARGUMENT
                        help message for --new-argument











          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Enabling and Disabling Actions


--action-group

Some actions are enabled by default and others are disabled by default, based on the script.  However, sometimes the set of default actions are biased towards developers, or a production environment, and are not the ideal set of default actions for another environment.

Action groups allow for defining other sets of defaults.  For example, there could be a development, staging, or production action group for that environment.  These would have to be defined in the script.

Consider the following action groups.









	Action
	development
	production




	clobber
	no
	yes


	pull
	no
	yes


	prepare-dev-env
	yes
	no


	build
	yes
	yes


	package
	yes
	yes


	upload
	no
	yes


	notify
	no
	yes








Running the script with --action-group development would enable the prepare-dev-env, build, and package actions, while --action-group production would enable all actions except for prepare-dev-env.

There are also the built-in all and none groups, that enable all and disable all actions, respectively.




--actions

The --actions option takes a number of action names as arguments.  Those actions will be enabled; all others will be disabled.

--actions and --action-group are incompatible.  Currently --actions will override --action-group and is not an error.

For an example, see –actions in the quickstart.




--add-actions

The --add-actions option adds a set of actions to the set of already enabled actions.  In the above example, --action-group development --add-actions notify would enable the prepare-dev-env, build, package, and notify actions.




--skip-actions

The --skip-actions option removes a set of actions from the set of already enabled actions.  In the above example, --action-group development --skip-actions package would enable the prepare-dev-env and build actions.







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Configuration


Configuration Overview

The runtime configuration of a Script is built from several layers.


	There is a ConfigTemplate that can have default values for certain config variables.  These defaults are the basis of the config dict.  (See ConfigTemplates for more details on ConfigTemplate).

	The script can define an initial_config dict that is laid on top of the ConfigTemplate defaults, so any shared config variables are overwritten by the initial_config.

	The ConfigTemplate.get_parser() method generates an argparse.ArgumentParser.  This parser parses the commandline options.

	If the commandline options specify any files via the --config-file option, then those files are read, and the contents are overlaid on top of the config.  The first file specified will be overlaid first, then the second, and so on.

	If the commandline options specify any optional config files via the --opt-config-file option, and if those files exist, then each existing file is read and the contents are overlaid on top of the config.

	Finally, any other commandline options are overlaid on top of the config.



After the config is built, the script logs the config, and saves it to a localconfig.json file.  This file can be inspected or reused for a later script run.




ConfigTemplates

It’s very powerful to be able to build a configuration dict that can hold any key value pairs, but it’s non-trivial for users to verify if their config is valid or if there are options that they’re not taking advantage of.

To make the config more well-defined, we have the ConfigTemplate.  The ConfigTemplate is comprised of ConfigVariable objects, and is based on the argparse.ArgumentParser, but with these qualities:


	The ConfigTemplate can keep track of all config variables, including ones that aren’t available as commandline options.  The option-less config variables must be specified via default, config file, or initial_config.

	The templates can be added together, via ConfigTemplate.update().

	Each ConfigVariable self-validates, and the ConfigTemplate makes sure there are no conflicting commandline options.

	There is a ConfigTemplate.remove_option() method to remove a commandline option from the corresponding ConfigVariable.  This may be needed if you want to add two config templates together, but they both have a -f commandline option specified, for example.

	The ConfigTemplate.validate_config() method validates the built configuration.  Each ConfigVariable can define whether they’re required, whether they require or are incompatible with other variables (required_vars and incompatible_vars), and each can define their own validate_cb callback function.

	There is a ConfigTemplate.add_argument() for those who want to maintain argparse syntax.



Parent parsers are supported, to group commandline options in the --help output.  Subparsers are not currently supported, though it may be possible to replace the ConfigTemplate.parser with a subparser-enabled parser at the expense of validation and the ability to ConfigTemplate.update().

When supporting downstream scripts, it’s best to keep each ConfigTemplate modular.  It’s easy to combine them via ConfigTemplate.update(), but less trivial to remove functionality.  The action config template, for instance, can be added to the base config template right before running parse_args().




LoggingDict and ReadOnlyDict

Each Script has a config dict.  By default, this dict is a LoggingDict, which logs any changes made to the config.

For example, if the config looked like:

{
    "foo": 1,
    "bar": [2, 3, 4],
    "baz": {
        "z": 5,
        "y": 6,
        "x": 7,
    },
}





then updating the config might log:

00:11:22  INFO - root.config['baz'] update: y now 8





Alternatively, someone could change the script class to StrictScript, which uses ReadOnlyDict.  Once the ReadOnlyDict is locked, it cannot be modified.

By either explicitly logging any changes to the config, and/or preventing any changes to the config, it’s easier to debug any unexpected behavior.







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Scripts and Actions


Scripts and Phases

The Script is generally what one would think of as the script itself: it parses the commandline arguments and runs each enabled Action.  There’s the possibility of enabling running multiple Scripts in parallel [https://github.com/scriptharness/python-scriptharness/issues/12] at some point.

It’s possible to add callbacks, called listeners, to the Script.  These get triggered in phases.  The list of phases are in ALL_PHASES; the phases that allow listeners are in LISTENER_PHASES.


	The PRE_RUN phase is first, before any actions are run.

	The PRE_ACTION phase happens before every enabled action, but a listener can be added to a subset of those actions if desired.

	The ACTION phase is when the enabled Action is run.  No listener can be added to the ACTION phase.

	The POST_ACTION phase happens after every enabled action, but a listener can be added to a subset of those actions if desired.

	The POST_RUN phase happens after all enabled actions are run.

	The POST_FATAL phase happens after a ScriptHarnessFatal exception is raised, but before the script exits.






Contexts

Each listener or Action function is passed a Context.  The Context is a namedtuple with the following properties:


	script (Script): the Script calling the function

	config (dict): by default this is a LoggingDict

	logger (logging.Logger): the logger for the Script

	action (Action): this is only defined during the RUN_ACTION, PRE_ACTION, and POST_ACTION phases; it is None in the other phases.

	phase (str): this will be one of PRE_RUN, POST_RUN, PRE_ACTION, POST_ACTION, or POST_FATAL, depending on which phase we’re in.



The logger and config (and to a lesser degree, the script and action) objects are all available to each function called for convenience and consistency.




Actions

Each action can be enabled or disabled via commandline options (see Enabling and Disabling Actions).  By default they look for a function with the same name as the action name, with - replaced by _.  However, any function or method may be specified as the Action.function.

When run, the Action calls the Action.function with a Context.  The function should raise ScriptHarnessError on error, or ScriptHarnessFatal on fatal error.

Afterwards, the Action.history contains the return_value, status, start_time, and end_time.







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Commands


Command and run()

The Command object simply takes an external command and runs it, logging stdout and stderr as each message arrives.  The main benefits of using Command are logging and timeouts.  Command takes two timeouts: output_timeout, which is how long the command can go without outputting anything before timing out, and max_timeout, which is the total amount of time that can elapse from the start of the command.

(The command is run via subprocess.Popen and timeouts are monitored via the multiprocessing module.)

After the command is run, it runs the detect_error_cb callback function to determine whether the command was run successfully.

The process of creating and running a Command is twofold: Command.__init__() and Command.run().  As a shortcut, there is a run() function that will do both steps for you.




ParsedCommand and parse()

Ideally, external command output would be for humans only, and the exit code would be meaningful.  In practice, this is not always the case.  Exit codes aren’t always helpful or even meaningful, and sometimes critical information is buried in a flood of output.

ParsedCommand takes the output of a command and parses it for matching substrings or regular expressions, using ErrorLists and OutputParser to determine the log level of a line of output.  Because it subclasses Command, ParsedCommand also has built-in output_timeout and max_timeout support.

As with Command and run(), ParsedCommand has a shortcut function, parse().




ErrorLists and OutputParser

The ErrorList object describes which lines of output are of special interest.  It’s a class for better validation.

An example error_list:

[
    {
        "regex": re.compile("^Error: not actually an error!"),
        level=-1
    }, {
        "regex": re.compile("^Error:"),
        "level": logging.ERROR,
        "pre_context_lines": 5,
        "post_context_lines": 5
    }, {
        "substr": "Obscure error #94382",
        "explanation":
            "This is a fatal program error."
        "exception": ScriptHarnessFatal
    }
]





Any output line that matches the first regex will be ignored (discarded), because level is negative.  Because the list is matched in order, the more specific regex is placed before the more general 2nd regex.  If the order were reversed, the more specific regex would never match anything.  The second regex sets the level to logging.ERROR for this line, and 5 lines above and 5 lines below this message.  (See OutputBuffer and context lines.)

The final substring has an explanation that will be logged immediately after the matching line, to explain vague error messages.  Because it has a defined exception, it will raise.

ParsedCommand sends its output to the OutputParser object, which passes it on to the ErrorList.  It keeps track of the number of errors and warnings, as well as handling any context line buffering through the OutputBuffer.




OutputBuffer and context lines

Sometimes there’s an obvious error message line, like make: *** [all] Error 2, but it’s not very helpful without the log context around the line.  For those ErrorLists, we can use pre_context_lines and post_context_lines for the number of lines before and after the matching line, respectively.  So if we wanted to mark the 10 lines above the make: *** [all] Error 2 as errors, as well, then we can do so.

(Long long ago, I would buffer all the output of certain commands, notably Visual Studio output, when I either wanted to


	separate threaded logs into easier-to-read unthreaded logs-per-component, or

	search back up above some line, like the first make line above make: *** [all] Error 2, so we wouldn’t have to hardcode some number of pre_context_lines and guess how much context is needed.



For the moment, however, we only have pre_context_lines and post_context_lines.)

The OutputBuffer holds the buffered output for pre_context_lines, and keeps track of how many lines in the future will need to be marked at which level for post_context_lines.

If multiple lines match, and a line of output is marked as multiple levels, the highest level will win.  E.g., logging.CRITICAL will beat logging.ERROR, which will beat logging.WARNING, etc.




Output, get_output(), and get_text_output()

Sometimes you need to manipulate the output from a command, not just log it or perform general error parsing.  There’s subprocess.check_output(), but that doesn’t log or have full timeout support.

Enter Output.  This also inherits Command, but because Output.run() is a completely different method than Command.run(), it has its own timeout implementation.  (It does still support both output_timeout and max_timeout.)  It redirects STDOUT and STDERR to temp files.

Much like Command has its helper run() function, Output has two helper functions: get_output() and get_text_output().  The former yields the Output object, and the caller can either access the NamedTemporaryFile Output.stdout and Output.stderr objects, or use the Output.get_output() method.  Because of this, it is suitable for binary or lengthy output.  get_text_output() will get the STDOUT contents for you, log them, and return them to you.







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
scriptharness package


Submodules



	scriptharness.actions module

	scriptharness.commands module

	scriptharness.config module

	scriptharness.errorlists module

	scriptharness.exceptions module

	scriptharness.log module

	scriptharness.os module

	scriptharness.process module

	scriptharness.script module

	scriptharness.status module

	scriptharness.structures module

	scriptharness.unicode module

	scriptharness.version module








Module contents

Scriptharness is a python scripting harness or framework.


	Scriptharness’ core principles are:

	
	Full logging.

	Flexible configuration.

	Modular actions.





	The top-level module has two main purposes:

	
	to serve shortcuts for simple scripts.  A single import, and a few function
calls should serve for simple workflows.

	the ScriptManager can keep track of all Script objects if and when
a script requires multiple Script objects.








	
scriptharness.get_script(*args, **kwargs)

	This will retrieve an existing script or create one and return it.





	Parameters:	
	actions (tuple of Actions) – When creating a new Script,
this is required.  When retrieving an existing script, this is
ignored/optional.

	parser (argparse.ArgumentParser) – When creating a new Script,
this is required.  When retrieving an existing script, this is
ignored/optional.

	name (Optional[str]) – The name of the script to retrieve/create.
Defaults to “root”.  This is a keyword argument, so use name=NAME

	**kwargs – kwargs to pass to MANAGER.get_script(); these will be passed
to Script.__init__() when creating a new Script.  When retrieving an
existing script, this is ignored/optional.






	Returns:	The Script instance.












	
scriptharness.get_config(name=u'root')

	This will return the config from an existing script.





	Parameters:	name (Optional[str]) – The name of the script to get the config from.
Defaults to “root”.


	Raises:	scriptharness.exceptions.ScriptHarnessException –
if there is no script
of name name.


	Returns:	config –
By default scriptharness.structures.LoggingDict


	Return type:	dict










	
scriptharness.get_actions(all_actions)

	Build a tuple of Action objects for the script.





	Parameters:	all_actions (data structure) – ordered mapping of action_name:enabled
bool, as accepted by iterate_pairs()


	Returns:	tuple of Action objects










	
scriptharness.get_actions_from_list(all_actions, default_actions=None)

	Helper method to generate the ordered mapping for get_actions().





	Parameters:	
	all_actions (list) – ordered list of all action names

	default_actions (Optional[list]) – actions that are enabled by default






	Returns:	tuple of Action objects












	
scriptharness.get_logger(name=u'root')

	This will return the logger from an existing script.

This function isn’t strictly needed, since the logging module keeps track
of loggers for you.  However, if/when scriptharness supports multiple
parallel Script objects, and if/when scriptharness supports structured
logging outside of the python logging module, this function will become
more important.





	Parameters:	name (Optional[str]) – The name of the script to get the logger from.
Defaults to “root”.


	Raises:	scriptharness.exceptions.ScriptHarnessException –
if there is no script
of name name.


	Returns:	logger (logging.Logger)










	
scriptharness.get_config_template(template=None, all_actions=None, definition=None)

	Create a script ConfigTemplate.

If template is not defined, it will take the definition (defaults to
DEFAULT_CONFIG_DEFINITION) and create a new ConfigTemplate.  Otherwise
it uses template.

If all_actions is defined, it will add an action ConfigTemplate to the
template.





	Parameters:	
	template (Optional[ConfigTemplate]) – the ConfigTemplate to optionally
append the action_template to.  Defaults to None.

	all_actions (Optional[list]) – list of actions to generate an action
ConfigTemplate.  Defaults to None.

	definition (Optional[dict]) – config definition to prepopulate the
ConfigTemplate with.  Defaults to DEFAULT_CONFIG_DEFINITION.






	Returns:	ConfigTemplate












	
scriptharness.prepare_simple_logging(path, mode=u'w', logger_name=u'', level=20, formatter=None)

	Create a unicode-friendly logger.

By default it’ll create the root logger with a console handler; if passed
a path it’ll also create a file handler.  Both handlers will have a
unicode-friendly formatter.

This function is intended to be called a single time.  If called
a second time, beware creating multiple console handlers or multiple
file handlers writing to the same file.





	Parameters:	
	path (Optional[str]) – path to the file log.  If this isn’t set,
don’t create a file handler.  Default ‘’

	mode (Optional[char]) – the mode to open the file log.  Default ‘w’

	logger_name (Optional[str]) – the name of the logger to use. Default ‘’

	level (Optional[int]) – the level to log.  Default DEFAULT_LEVEL

	formatter (Optional[Formatter]) – a logging Formatter to use; to handle
unicode, subclass UnicodeFormatter.






	Returns:	logger (Logger object).  This is also easily retrievable via
logging.getLogger(logger_name).












	
scriptharness.set_action_class(action_class)

	
	By default new actions use the scriptharness.actions.Action class.

	Override here.







	Parameters:	action_class (class) – use this class for new actions.










	
scriptharness.set_script_class(script_class)

	By default new scripts use the scriptharness.script.Script class.
Override here.





	Parameters:	script_class (class) – use this class for new scripts.















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.actions module


	The goals of modular actions are:

	
	faster development feedback loops, and

	different workflows for different usage requirements.








	
scriptharness.actions.LOGGER_NAME

	str

logging.Logger name to use






	
scriptharness.actions.STRINGS

	dict

strings for actions.  In the future these may be in a
function to allow for localization.






	
class scriptharness.actions.Action(name, action_groups=None, function=None, enabled=True)

	Bases: object

Basic Action object.


	
name

	str

This is the action name, for logging.






	
enabled

	bool

Enabled actions will run.  Disabled actions will log
the skip_message and not run.






	
strings

	dict

Strings for action-specific log messages.






	
logger_name

	str

The logger name for logging calls inside this object.






	
function

	function

This is the function to call in run_function().






	
history

	dict

History of the action (return_value, status, start_time,
end_time).






	
run(context)

	Run the action.

This sets self.history timestamps and status.





	Parameters:	context (Context) – the context from the calling Script.


	Returns:	status –
one of SUCCESS, ERROR, or FATAL.


	Return type:	int


	Raises:	scriptharness.exceptions.ScriptHarnessFatal –
when the function
raises ScriptHarnessFatal, run() re-raises.










	
run_function(context)

	Run self.function.  Called from run() for subclassing purposes.

This sets self.history[‘return_value’] for posterity.





	Parameters:	context (Context) – the context from the calling Script
(passed from run()).














	
scriptharness.actions.get_function_by_name(function_name)

	If function isn’t passed to Action, find the function with the same name

This searches in sys.modules[‘__main__’] and globals() for the function.





	Parameters:	function_name (str) – The name of the function to find.


	Returns:	the function found.


	Return type:	function


	Raises:	scriptharness.exceptions.ScriptHarnesException –
if the function is
not found or not callable.













          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.commands module

Commands, largely through subprocess.


	
scriptharness.commands.LOGGER_NAME

	str

default logging.Logger name.






	
scriptharness.commands.STRINGS

	dict

Strings for logging.






	
class scriptharness.commands.Command(command, logger=None, detect_error_cb=None, **kwargs)

	Bases: object

Basic command: run and log output.  Stdout and stderr are interleaved
depending on the timing of the message.  Because we’re logging output,
we’re expecting text/non-binary output only.  For binary output, use the
scriptharness.commands.Output object.


	
command

	list or string

The command to send to subprocess.Popen






	
logger

	logging.Logger

logger to log with.






	
detect_error_cb

	function

this function determines whether the
command was successful.






	
history

	dict

This dictionary holds the timestamps and status of
the command.






	
kwargs

	dict

These kwargs will be passed to subprocess.Popen, except
for the optional ‘output_timeout’ and ‘timeout’, which are processed by
Command.  output_timeout is how long a command can run without
outputting anything to the screen/log.  timeout is how long the
command can run, total.






	
strings

	dict

Strings to log.






	
add_line(line)

	Log the output.  Here for subclassing.





	Parameters:	line (str) – a line of output










	
finish_process()

	Here for subclassing.






	
static fix_env(env)

	Windows environments are fiddly.





	Parameters:	env (dict) – the environment we’ll be passing to subprocess.Popen.










	
log_env(env)

	Log environment variables.  Here for subclassing.





	Parameters:	env (dict) – the environment we’ll be passing to subprocess.Popen.










	
log_start()

	Log the start of the command, also checking for the existence of
cwd if defined.





	Raises:	scriptharness.exceptions.ScriptHarnessException –
if cwd is defined
and doesn’t exist.










	
run()

	Run the command.





	Raises:	scriptharness.exceptions.ScriptHarnessError on error –














	
class scriptharness.commands.Output(*args, **kwargs)

	Bases: scriptharness.commands.Command

Run the command and capture stdout and stderr to separate files.
The output can be binary or text.


	
strings

	dict

Strings to log.






	
stdout

	NamedTemporaryFile

file to log stdout to






	
stderr

	NamedTemporaryFile

file to log stderr to






	
+ all of the attributes in scriptharness.commands.Command

	




	
cleanup()

	Best effort cleanup of stdout and stderr temp files.






	
finish_process()

	Close the filehandles.






	
get_output(handle_name=u'stdout', text=True)

	Get output from file.  This reads the output into memory, so
this is not appropriate for large amounts of output.





	Parameters:	
	handle_name (Optional[“stdout” or “stderr”]) – the handle to read
from.  Defaults to “stdout”

	text (Optional[bool]) – whether the output is text.  If so, run
output through to_unicode() and rstrip().  Defaults to True.














	
run()

	








	
class scriptharness.commands.ParsedCommand(command, error_list=None, parser=None, **kwargs)

	Bases: scriptharness.commands.Command

Parse each line of output for errors.

This class could have easily subclassed both OutputParser and Command;
that may have been slightly cleaner.  However, people have subclassed
OutputParser in mozharness for various purposes; keeping the two objects
separate may encourage that behavior.


	
add_line(line)

	Send the line to the parser.





	Parameters:	line (str) – a line of output














	
scriptharness.commands.check_output(command, logger_name=u'scriptharness.commands.check_output', level=20, log_output=True, **kwargs)

	Wrap subprocess.check_output with logging





	Parameters:	
	command (str or list) – The command to run.

	logger_name (Optional[str]) – the logger name to log with.

	level (Optional[int]) – the logging level to log with.  Defaults to
logging.INFO

	log_output (Optional[bool]) – When true, log the output of the command.
Defaults to True.

	**kwargs – sent to subprocess.check_output()














	
scriptharness.commands.detect_errors(command)

	Very basic detect_errors_cb for Command.

This looks in the command.history for return_value.  If this is set
to 0 or other null value other than None, the command is successful.
Otherwise it’s unsuccessful.





	Parameters:	command (Command obj) – 










	
scriptharness.commands.detect_parsed_errors(command)

	Very basic detect_errors_cb for ParsedCommand.

This looks in the command.history for num_errors.  If this is set
to 0, the command is successful.  Otherwise it’s unsuccessful.





	Parameters:	command (Command obj) – 










	
scriptharness.commands.get_output(*args, **kwds)

	Run command and yield the Output cmd object.
The stdout and stderr file paths can be retrieved through cmd.stdout and
cmd.stderr, respectively.

The output is not logged, and is written as byte data, so this can work
for both binary or text.  If text, get_text_output is preferred for full
logging, unless the output is either sensitive in nature or so verbose
that logging it would be more harmful than useful.  Also, if text,
most likely the consumer will want to pass the output through
scriptharness.unicode.to_unicode().





	Parameters:	
	command (list or str) – the command to use in subprocess.Popen

	halt_on_failure (Optional[bool]) – raise ScriptHarnessFatal on error
if True.  Default: False

	**kwargs – kwargs to send to scriptharness.commands.Output






	Yields:	cmd (scriptharness.commands.Output)




	Raises:	scriptharness.exceptions.ScriptHarnessFatal –
when halt_on_failure is
True and we hit an error or timeout.












	
scriptharness.commands.get_text_output(command, level=20, **kwargs)

	Run command and return the raw stdout from that command.
Because we log the output, we’re assuming the output is text.





	Parameters:	
	command (list or str) – command for subprocess.Popen

	level (int) – logging level

	**kwargs – kwargs to send to scriptharness.commands.Output






	Returns:	output –
the stdout from the command.




	Return type:	text












	
scriptharness.commands.parse(command, **kwargs)

	Shortcut for running a ParsedCommand.

Not entirely sure if this should also catch ScriptHarnessFatal, as those
are explicitly trying to kill the script.





	Parameters:	
	command (list or str) – Command line to run.

	**kwargs – kwargs for run/ParsedCommand.






	Returns:	command exit code (int)




	Raises:	scriptharness.exceptions.ScriptHarnessFatal –
on fatal error












	
scriptharness.commands.run(command, cmd_class=<class 'scriptharness.commands.Command'>, halt_on_failure=False, *args, **kwargs)

	Shortcut for running a Command.

Not entirely sure if this should also catch ScriptHarnessFatal, as those
are explicitly trying to kill the script.





	Parameters:	
	command (list or str) – Command line to run.

	cmd_class (Optional[Command subclass]) – the class to instantiate.
Defaults to scriptharness.commands.Command.

	halt_on_failure (Optional[bool]) – raise ScriptHarnessFatal on error
if True.  Default: False

	**kwargs – kwargs for subprocess.Popen.






	Returns:	command exit code (int)




	Raises:	scriptharness.exceptions.ScriptHarnessFatal –
on fatal error















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.config module

The goal of flexible configuration is to make each script useful in a
variety of contexts and environments.


	
scriptharness.config.LOGGER_NAME

	str

logging.getLogger name






	
scriptharness.config.OPTION_REGEX

	re.compile

regular expression to validate a commandline
option






	
scriptharness.config.VALID_ARGPARSE_ACTIONS

	tuple

for validating the ConfigVariable action






	
scriptharness.config.STRINGS

	dict

strings for ConfigVariable






	
scriptharness.config.DEFAULT_CONFIG_DEFINITION

	dict

Config definition to create the default
ConfigTemplate for all scriptharness scripts.






	
class scriptharness.config.ConfigTemplate(config_dict)

	Bases: object

Short for Config Template Definition, or CTD.
Because scriptharness scripts can take any arbitrary configuration
variables or commandline options from various locations, it’s difficult
to tell what requires what, what’s optional, and what’s extraneous.

By allowing the developer to create a config template definition, we
can check for config well-formedness.


	
config_variables

	dict

a name to ConfigVariable dictionary






	
parser

	argparse.ArgumentParser

this is the commandline parser.






	
add_argument(*args, **kwargs)

	Helper method to make ConfigTemplate usage more similar to
ArgumentParser.






	
add_variable(definition, name=None)

	Add a variable to the config template definition.

See scriptharness.config.ConfigVariable for the definition format.





	Parameters:	
	name (str) – the variable name.  This maps to argparse’s dest

	definition (dict or ConfigVariable) – a ConfigVariable or the
definition of the config variable.














	
all_options

	Build and return set of all commandline options





	Returns:	options –
all commandline options


	Return type:	set










	
defaults()

	Get the defaults for all the variables, even the non-commandline
ones.





	Returns:	name to default value.


	Return type:	dict










	
get_parser(**kwargs)

	Create and populate the argparse.ArgumentParser for commandline
parsing.





	Parameters:	**kwargs – keyword arguments to send to argparse.ArgumentParser.


	Returns:	the commandline parser for this Config
Template


	Return type:	argparse.ArgumentParser










	
items()

	Have ConfigTemplate act more like a dict.





	Returns:	self.config_variables.items()










	
remove_option(option)

	Remove a commandline option from the ConfigTemplate.

Because we can add templates together, we may sometimes
encounter conflicting commandline options.  This method allows us
to remove those options from one or both templates.





	Parameters:	option (str) – The commandline option to remove.










	
update(config_dict)

	Update self with a new config_dict





	Parameters:	
	config_dict (dict) – A dict of ConfigVariables or dicts.

	strict (Optional[bool]) – When True, throw an exception when there’s
a conflicting variable.














	
validate_config(config)

	Validate a config dict against each
ConfigVariable.validate_config check.





	Parameters:	config (dict) – the config dictionary to validate.


	Raises:	scriptharness.exceptions.ScriptHarnessException –
on error.














	
class scriptharness.config.ConfigVariable(name, definition)

	Bases: object

This object defines what a single config variable looks like.

The variable is overridable from the commandline when when
self.definition[‘options’] is defined.  Otherwise the variable is only
script-level and config-file-level settable.

The definition will look like this:

{
  # argparse-specific, for argparse.ArgumentParser.add_argument
  # if 'options' is not set, these will be ignored.
  'options': ['--foo', '-f'],
  'action': 'store',  # (None, 'store', 'store_const', 'store_true',
                      #  'store_false', 'append', 'append_const',
                      #  'count', 'help', 'version', 'parsers')
                      # defaults to 'store'

  # argparse-related
  # if 'options' is set, these will be used with
  # argparse.ArgumentParser.add_argument; otherwise they're here for
  # the non-commandline-config.
  'help': 'help string',  # not sure whether this should be required
                          # or highly recommended.
  'required': True,
  'default': 'bar',
  'parent_parser': 'parent',  # this is for argparse --help sorting
  'type': str,  # a python type
  'choices': [],  # enum / list of choices

  # Not related to argparse
  'validate_cb': None,  # optional, function to validate the
                        # config.  This function should take the args
                        # (name, parsed_args) and return a list of
                        # error message strings.
  'incompatible_vars': [],  # names of incompatible vars if this var
                            # is set
  'required_vars': [],  # names of other vars that are required to be
                        # set if this var is set
  'optional_vars': [],  # names of other vars that are optionally
                        # used in relation to this var.  This is purely
                        # informational.
}






	
name

	str

the name of the variable.  This corresponds to the
argparse dest, or the config dict key.






	
definition

	dict

the config definition for this variable.  See
above for the format.






	
add_argument(parser)

	If self.definition[‘options’] is set, add the appropriate argument
to the parser.





	Parameters:	parser (argparse.ArgumentParser) – the parser to add the argument to.


	Returns:	on success.


	Return type:	argparse.Action


	Raises:	ScriptHarnessException –
on argparse.ArgumentParser.add_argument
error.










	
validate_config(config)

	Once we build the config, we can validate it by sending the built
config to each of these methods.





	Parameters:	config (dict) – the config built from build_config()


	Returns:	messages –
any error messages, if applicable.


	Return type:	list of strings














	
scriptharness.config.action_config_template(all_actions)

	Create an action option parser from the action list.

Actions to run are specified as the argparse.REMAINDER options.





	Parameters:	all_actions (iterable) – this is either all Action objects for the
script, or a data structure of pairs of action_name:enabled to pass
to iterate_pairs().


	Returns:	with action options


	Return type:	ConfigTemplate










	
scriptharness.config.build_config(template, parsed_args, initial_config=None)

	Build a configuration dict from the parser and initial config.

The configuration is built in this order:



	template defaults

	initial_config

	parsed_args.config_files, in order

	parsed_args.opt_config_files, in order, if they exist

	non-default parser args (cmdln_args)






So the commandline args can override everything else, as long as there are
options to do so. (Commandline args will need to be a subset of the parser
args).  The final configuration file can override everything but the
commandline args, and its config isn’t restricted as a subset of the
parser options.





	Parameters:	
	parser (ArgumentParser) – the parser used to parse_args()

	parsed_args (argparse Namespace) – the results of parse_args()

	initial_config (Optional[dict]) – initial configuration to set before
commandline args














	
scriptharness.config.download_url(url, path=None, timeout=None)

	Download a url to a path.





	Parameters:	
	url (str) – the url to download

	path (Optional[str]) – the path to write the contents to.

	timeout (Optional[float]) – how long to wait before timing out.






	Returns:	path –
the path to the downloaded file.




	Return type:	str




	Raises:	scriptharness.exceptions.ScriptHarnessException –
if there are download
issues, or if we can’t write to path.












	
scriptharness.config.get_config_template(template=None, all_actions=None, definition=None)

	Create a script ConfigTemplate.

If template is not defined, it will take the definition (defaults to
DEFAULT_CONFIG_DEFINITION) and create a new ConfigTemplate.  Otherwise
it uses template.

If all_actions is defined, it will add an action ConfigTemplate to the
template.





	Parameters:	
	template (Optional[ConfigTemplate]) – the ConfigTemplate to optionally
append the action_template to.  Defaults to None.

	all_actions (Optional[list]) – list of actions to generate an action
ConfigTemplate.  Defaults to None.

	definition (Optional[dict]) – config definition to prepopulate the
ConfigTemplate with.  Defaults to DEFAULT_CONFIG_DEFINITION.






	Returns:	ConfigTemplate












	
scriptharness.config.get_filename_from_url(url)

	Determine the filename of a file from its url.





	Parameters:	url (str) – the url to parse


	Returns:	name –
the name of the file


	Return type:	str










	
scriptharness.config.get_list_actions_string(action_name, enabled, groups=None)

	Build a string for –list-actions output.





	Parameters:	
	action_name (str) – name of the action

	enabled (bool) – whether the action is enabled by default

	groups (Optional[list]) – a list of action_group names that the action
belongs to.  Defaults to None.






	Returns:	string –
a line of –list-actions output.




	Return type:	str












	
scriptharness.config.is_url(resource)

	Is it a url?


Note

This function will return False for file:// strings







	Parameters:	resource (str) – possible url


	Returns:	True if it’s a url, False otherwise.


	Return type:	bool










	
scriptharness.config.parse_args(template, cmdln_args=None, **kwargs)

	Parse the commandline args.





	Parameters:	
	template (ConfigTemplate) – specify the config template to use

	cmdln_args (Optional[list]) – override the commandline args with these

	**kwargs – sent to ConfigTemplate.get_parser() if parser is a
ConfigTemplate






	Returns:	tuple(ArgumentParser, parsed_args)












	
scriptharness.config.parse_config_file(path)

	Read a config file and return a dictionary.
For now, only support json.





	Parameters:	path (str) – path or url to config file.


	Returns:	config –
the parsed json dict.


	Return type:	dict


	Raises:	scriptharness.exceptions.ScriptHarnessException –
if the path is
unreadable or not valid json.










	
scriptharness.config.update_dirs(config, max_depth=2)

	Directory paths for the script are defined in config.
Absolute paths help avoid chdir issues.

scriptharness_base_dir (or any other directory path, or any config value)
can be overridden during build_config().  Defining the directory paths as
formattable strings is configurable but not overly complex.

Any key in config named scriptharness_SOMETHING_dir will be % formatted
with the other dirs as the replacement dictionary.





	Parameters:	config (dict) – the config to parse for scriptharness_SOMETHING_dir keys.










	
scriptharness.config.validate_config_definition(name, definition)

	Validate the ConfigVariable definition’s well-formedness.





	Parameters:	
	name (str) – the name of the variable

	definition (dict) – the definition to validate






	Raises:	ScriptHarnessException –
if there are any error messages















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.errorlists module

Error lists are used to parse output in scriptharness.log.OutputParser.

Each line of output is matched against each substring or regular expression
in the error list.  On a match, we determine the ‘level’ of that line.
Levels are ints, and match the levels in the python logging module.  Negative
levels are ignored.


	
class scriptharness.errorlists.ErrorList(error_list, strict=True)

	Bases: list

Error lists, to describe how to parse output.  In object form for
better validation.

An example error_list:

[
    {
        "regex": re.compile("^Error: not actually an error!"),
        level=-1
    }, {
        "regex": re.compile("^Error:"),
        "level": logging.ERROR,
        "pre_context_lines": 5,
        "post_context_lines": 5
    }, {
        "substr": "Obscure error #94382",
        "explanation":
            "This is a fatal program error."
        "exception": ScriptHarnessFatal
    }
]





Any output line that matches the first regex will be ignored (discarded),
because level is negative.  Because the list is matched in order, the
more specific regex is placed before the more general 2nd regex.  If the
order were reversed, the more specific regex would never match anything.
The second regex sets the level to logging.ERROR for this line, and 5
lines above and 5 lines below this message.

Currently undecided whether we should support modification of ErrorLists
(which would require validating any new items and recalculating pre
and post context_lines) or having ErrorList inherit tuple and dealing
with all the renaming.  Most likely the former, but until then, the
supported way of modifying an ErrorList is to create a new one.


	
strict

	bool

If True, be more strict about well-formed error_lists.






	
pre_context_lines

	int

The max number of lines the error_list defines
in pre_context_lines.






	
post_context_lines

	int

The max number of lines the error_list defines
in post_context_lines.






	
validate_error_list(error_list)

	Validate an error_list.
This is going to be a pain to unit test properly.





	Parameters:	error_list (list of dicts) – an error_list.


	Returns:	(pre_context_lines, post_context_lines) (tuple of int, int)


	Raises:	scriptharness.exceptions.ScriptHarnessException –
if error_list is not
well-formed.














	
scriptharness.errorlists.MAKE_ERROR_LIST = [{u'substr': u'No rule to make target ', u'level': 40}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e4f4030>, u'level': 40}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e5cfac0>, u'level': 40}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e4fa120>, u'level': 40}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e4fc1e0>, u'level': 40}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e4c9130>, u'level': 30}, {u'regex': <_sre.SRE_Pattern object at 0x7f1d8e5b42a0>, u'level': 40}, {u'substr': u'Warning: ', u'level': 30}]

	Make errors.  These are prime candidates to add pre_context_lines to.






	
scriptharness.errorlists.SSH_ERROR_LIST = [{u'substr': u'Name or service not known', u'level': 40}, {u'substr': u'Could not resolve hostname', u'level': 40}, {u'substr': u'POSSIBLE BREAK-IN ATTEMPT', u'level': 30}, {u'substr': u'Network error:', u'level': 40}, {u'substr': u'Access denied', u'level': 40}, {u'substr': u'Authentication refused', u'level': 40}, {u'substr': u'Out of memory', u'level': 40}, {u'substr': u'Connection reset by peer', u'level': 30}, {u'substr': u'Host key verification failed', u'level': 40}, {u'substr': u'logging.WARNING:', u'level': 30}, {u'substr': u'rsync error:', u'level': 40}, {u'substr': u'Broken pipe:', u'level': 40}, {u'substr': u'Permission denied:', u'level': 40}, {u'substr': u'connection unexpectedly closed', u'level': 40}, {u'substr': u'Warning: Identity file', u'level': 40}, {u'substr': u'command-line line 0: Missing argument', u'level': 40}]

	For ssh, scp, rsync over ssh.






	
scriptharness.errorlists.check_context_lines(context_lines, orig_context_lines, name, messages)

	Verifies and returns the larger int of context_lines and
orig_context_lines.





	Parameters:	
	context_lines (value) – The value of pre_context_lines or
post_context_lines to validate.

	orig_context_lines (int) – The previous max int sent to
check_context_lines

	name (str) – The name of the field (pre_context_lines or
post_context_lines)

	messages (list) – The list of error messages so far.






	Returns:	If context_lines is a non-int or negative, an error is appended
to messages and we return orig_context_lines.  Otherwise, we return
the max of context_lines or orig_context_lines.




	Return type:	int












	
scriptharness.errorlists.check_ignore(strict, ignore, message, messages)

	If the level of an error_check is negative, it will be ignored.
There is currently no pre_context_lines or post_context_lines support
for ignored lines.  When self.strict is True, append an error to
messages.

This function doesn’t do a whole lot anymore, other than remove the
number of branches in validate_error_list.





	Parameters:	
	strict (bool) – Whether the error-checking is strict or not.

	ignore (bool) – True when ‘level’ is in error_check and negative.

	message (str) – The message to append if ignore and strict.

	messages (list) – The error messages so far.














	
scriptharness.errorlists.exactly_one(key1, key2, error_check, messages)

	Make sure one, and only one, of key1 and key2 are in error_check.
If that’s not the case, append an error message in messages.





	Parameters:	
	key1 (str) – Dictionary key.

	key2 (str) – Dictionary key.

	error_check (dict) – a single item of error_list.

	messages (list) – the list of error messages so far.






	Returns:	True if there is exactly one of the two keys in error_check.




	Return type:	Bool












	
scriptharness.errorlists.verify_unicode(key, error_check, messages)

	If key is in error_check, it must be of type six.text_type.
If not, append an error message to messages.





	Parameters:	
	key (str) – a dict key

	error_check (dict) – a single item of error_list

	messages (list) – The error messages so far

















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.exceptions module

Scriptharness exceptions.

These exceptions are written with several things in mind:



	the exceptions should be unicode-capable in python 2.7 (py3 gets that
for free),

	the exceptions should differentiate between user-facing exceptions and
developer-facing exceptions, and

	ScriptHarnessFatal should exit the script.






There may be more exceptions in the future, to further differentiate between
errors.


	
exception scriptharness.exceptions.ScriptHarnessBaseException

	Bases: exceptions.Exception

All scriptharness exceptions should inherit this exception.

However, in most cases you probably want to catch ScriptHarnessException
instead.


	
__unicode__()

	This method will become __unicode__() in py2 via the
@six.python_2_unicode_compatible decorator.










	
exception scriptharness.exceptions.ScriptHarnessError

	Bases: scriptharness.exceptions.ScriptHarnessBaseException

User-facing exception.

Scriptharness has detected an error in the running process.

Since this exception is not designed to always exit, it’s best to
catch these and deal with the error.






	
exception scriptharness.exceptions.ScriptHarnessException

	Bases: scriptharness.exceptions.ScriptHarnessBaseException

There is a problem in how scriptharness is being called.
All developer-facing exceptions should inherit this class.

If you want to catch all developer-facing scriptharness exceptions,
catch ScriptHarnessException.






	
exception scriptharness.exceptions.ScriptHarnessFatal

	Bases: exceptions.SystemExit, scriptharness.exceptions.ScriptHarnessBaseException

User-facing exception.

Scriptharness has detected a fatal failure in the running process.
This exception should result in program termination; using try/except may
result in unexpected or dangerous behavior.






	
exception scriptharness.exceptions.ScriptHarnessTimeout

	Bases: scriptharness.exceptions.ScriptHarnessException

There was a timeout while running scriptharness.









          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.log module

The goal of full logging is to be able to debug problems purely through
the log.


	
scriptharness.log.LOGGER_NAME

	str

the default name to use for logging.getLogger()






	
scriptharness.log.DEFAULT_DATEFMT

	str

default logging date format






	
scriptharness.log.DEFAULT_FMT

	str

default logging format






	
scriptharness.log.DEFAULT_LEVEL

	int

default logging level






	
class scriptharness.log.LogMethod(func=None, **kwargs)

	Bases: object

Wrapper decorator object for logging and error detection.
This is here as a shortcut to wrap functions with basic logging.


	
default_config

	dict

contains the config defaults that can be
overridden via __init__ kwargs.  Changing default_config directly
may carry over to other decorated LogMethod functions!






	
__call__(func, *args, **kwargs)

	Wrap the function call as a decorator.

When there are decorator arguments, __call__ is only called once, at
decorator time.  args and kwargs only show up when func is called,
so we need to create and return a wrapping function.





	Parameters:	
	func (function) – this is the decorated function.

	*args – the args from the wrapped function call.

	**kwargs – the kwargs from the wrapped function call.














	
default_config = {u'post_success_msg': u'%(func_name)s completed.', u'error_level': 40, u'post_failure_msg': u'%(func_name)s failed.', u'logger_name': u'scriptharness.{func_name}', u'level': 20, u'pre_msg': u'%(func_name)s arguments were: %(args)s %(kwargs)s', u'exception': None, u'detect_error_cb': None}

	




	
post_func()

	Log the success message until we get an error detection callback.

This method is split out for easier subclassing.






	
pre_func()

	Log the function call before proceeding.

This method is split out for easier subclassing.






	
set_repl_dict()

	Create a replacement dictionary to format strings.

The log messages in pre_func() and post_func() require some additional
info.  Specify that info in the replacement dictionary.

Currently, set the following:

func_name: self.func.__name__
*args: the args passed to self.func()
**kwargs: the kwargs passed to self.func()





After running self.func, we’ll also set return_value.










	
class scriptharness.log.OutputBuffer(logger, pre_context_lines, post_context_lines)

	Bases: object

Buffer output for context lines: essentially, an error_check can set
the level of X lines in the past or Y lines in the future.  If multiple
error_checks set the level for a line, currently the higher level wins.

For instance, if a make: *** [all] Error 2 sets the level to
logging.ERROR for 10 pre_context_lines, we’ll need to buffer at least 10
lines in case we hit that error.  If a second error_check sets the level
to logging.WARNING 5 lines above the make: *** [all] Error 2, the ERROR
wins out, and that line is still marked as an ERROR.

This restricts the buffer size to pre_context_lines.  In years past
I’ve also ordered Visual Studio output by thread, and set the error all the
way up until we match some other pattern, so the buffer had to grow to an
arbitrary size.  Those could be represented by separate classes/subclasses
if needed.


	
add_line(level, line, *args, **kwargs)

	Add a line to the buffer.





	Parameters:	
	level (int) – the logging level for the line.

	line (str) – the line to log

	pre_context_lines (Optional[int]) – the number of lines before this
one to set to log level level.  This defaults to 0.

	post_context_lines (Optional[int]) – the number of lines after this
one to set to log level level.  This defaults to 0.














	
dump_buffer()

	Write all the buffered log lines to the log.






	
pop_buffer(num=1)

	Pop num lines from the front of the buffer and log them at the
level set for each line.





	Parameters:	num (Optional[int]) – The number of lines to pop and log.  Defaults
to 1.










	
update_buffer_levels(level, pre_context_lines)

	Set the level for each buffer line to level if it’s higher than
the existing level.





	Parameters:	
	level (int) – The logging level to set the lines to

	pre_context_lines (int) – The number of lines to affect.  Since these
are relative to the current line, these will be counted backwards
from the end of the buffer.


















	
class scriptharness.log.OutputParser(error_list, logger=None, **kwargs)

	Bases: object

Helper object to parse command output.


	
add_buffer(level, messages, error_check=None)

	Add the line to self.context_buffer if it exists, otherwise log it.





	Parameters:	
	level (int) – logging level to log the line at

	line (str) – line to log

	error_check (Optional[dict]) – the error_check in error_list that
first matched line, if applicable.  Defaults to None.














	
add_line(line)

	parse a line and check if it matches one in error_list,
if so then log it.





	Parameters:	line (str) – a line of output to parse.














	
class scriptharness.log.UnicodeFormatter(fmt=None, datefmt=None)

	Bases: logging.Formatter

Subclass logging.Formatter to handle unicode strings in py2.


	
encoding

	str

defaults to utf-8.






	
encoding = u'utf-8'

	




	
format(record)

	








	
scriptharness.log.get_console_handler(formatter=None, logger=None, level=20)

	Create a stream handler to add to a logger.





	Parameters:	
	formatter (Optional[logging.Formatter]) – formatter to use for logs.

	logger (Optional[logging logger]) – logger to add the file handler to.

	level (Optional[int]) – logging level for the file.






	Returns:	logging.StreamHandler handler.  This can be added to a logger
via logger.addHandler(handler)












	
scriptharness.log.get_file_handler(path, level=20, formatter=None, logger=None, mode=u'w')

	Create a file handler to add to a logger.





	Parameters:	
	path (str) – the path to the logfile.

	level (Optional[int]) – logging level for the file.

	formatter (Optional[logging.Formatter]) – formatter to use for logs.

	logger (Optional[logging logger]) – logger to add the file handler to.

	mode (Optional[str]) – mode to open the file






	Returns:	handler –
This can be added to a logger
via logger.addHandler(handler)




	Return type:	logging.FileHandler












	
scriptharness.log.get_formatter(fmt=u'%(asctime)s %(levelname)8s - %(message)s', datefmt=u'%H:%M:%S')

	Create a unicode-friendly formatter to add to logging handlers.





	Parameters:	
	fmt (Optional[str]) – logging message format.

	datefmt (Optional[str]) – date format for the log message.






	Returns:	UnicodeFormatter to add to a handler - handler.setFormatter(formatter)












	
scriptharness.log.prepare_simple_logging(path, mode=u'w', logger_name=u'', level=20, formatter=None)

	Create a unicode-friendly logger.

By default it’ll create the root logger with a console handler; if passed
a path it’ll also create a file handler.  Both handlers will have a
unicode-friendly formatter.

This function is intended to be called a single time.  If called
a second time, beware creating multiple console handlers or multiple
file handlers writing to the same file.





	Parameters:	
	path (Optional[str]) – path to the file log.  If this isn’t set,
don’t create a file handler.  Default ‘’

	mode (Optional[char]) – the mode to open the file log.  Default ‘w’

	logger_name (Optional[str]) – the name of the logger to use. Default ‘’

	level (Optional[int]) – the level to log.  Default DEFAULT_LEVEL

	formatter (Optional[Formatter]) – a logging Formatter to use; to handle
unicode, subclass UnicodeFormatter.






	Returns:	logger (Logger object).  This is also easily retrievable via
logging.getLogger(logger_name).















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.os module

Wrapping python os and related functions.





	param LOGGER_NAME:

		the default logging.Logger name


	type LOGGER_NAME:

		str






	
scriptharness.os.make_parent_dir(path, **kwargs)

	Create the parent of path if it doesn’t exist.





	Parameters:	
	path (str) – path to the file.

	**kwargs – These are passed to makedirs().














	
scriptharness.os.makedirs(path, level=20, context=None)

	os.makedirs() wrapper.





	Parameters:	
	path (str) – path to the directory

	level (Optional[int]) – the logging level to log with.  Defaults to
logging.INFO.

















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.process module

Scriptharness multiprocessing support.


	
scriptharness.process.command_subprocess(queue, *args, **kwargs)

	Run a subprocess as a multiprocess.Process.
This will open STDOUT and STDERR to the same pipe, and read lines from
it.  Use this with watch_command() for timeout support.


Note

This is intended for non-binary output only.







	Parameters:	
	queue (multiprocessing.Queue) – the queue to write to

	*args – sent to subprocess.Popen

	**kwargs – sent to subprocess.Popen














	
scriptharness.process.kill_proc_tree(pid, include_parent=False, wait=5)

	Find the children of a process and kill them; optionally also kill
the process.  Uses psutil, which is cross-platform and py2&3 compatible.

From http://stackoverflow.com/a/4229404





	Parameters:	
	pid (int) – The process ID of the parent.

	include_parent (Optional[bool]) – kill the parent as well if True.
Defaults to False.

	wait (Optional[int]) – How long to wait for the children and parent to
die.  Defaults to 5.














	
scriptharness.process.kill_runner(runner)

	Kill the runner process and children.





	Parameters:	runner (multiprocessing.Process) – the process to kill.










	
scriptharness.process.watch_command(logger, queue, runner, add_line_cb, max_timeout=None, output_timeout=None)

	This function watches the queue of the command_subprocess process.

Usage:

queue = multiprocessing.Queue()
runner = multiprocessing.Process(target=command_subprocess,
                                 args=(queue,))
runner.start()
watch_command(logger, queue, runner, add_line_cb,
              output_timeout=output_timeout, max_timeout=max_timeout)









	Parameters:	
	logger (logging.Logger) – the logger to use.

	queue (multiprocessing.Queue) – the queue that the runner is writing to.

	runner (multiprocessing.Process) – the runner Process to watch.

	add_line_cb (function) – any output lines read will be sent here.

	max_timeout (Optional[int]) – when specified, the process will be killed
if it takes longer than this number of seconds.  Default: None

	output_timeout (Optional[int]) – when specified, the process will be
killed if it doesn’t produce any output for this number of seconds.
Default: None






	Returns:	runner.exitcode –
on non-timeout.




	Return type:	int




	Raises:	
	scriptharness.exceptions.ScriptHarnessFatal –
on KeyboardInterrupt

	scriptharness.exceptions.ScriptHarnessTimeout –
on output_timeout or
max_timeout.














	
scriptharness.process.watch_output(logger, runner, stdout, stderr, max_timeout=None, output_timeout=None)

	This function watches the queue of the output_subprocess process.

Usage:

runner = multiprocessing.Process(target=output_subprocess, args=(queue,))
runner.start()
watch_output(logger, runner, output_timeout=output_timeout,
             max_timeout=max_timeout)









	Parameters:	
	logger (logging.Logger) – the logger to use.

	runner (subprocess.Popen) – the runner process to watch.

	max_timeout (Optional[int]) – when specified, the process will be killed
if it takes longer than this number of seconds.  Default: None

	output_timeout (Optional[int]) – when specified, the process will be
killed if it doesn’t produce any output for this number of seconds.
Default: None






	Returns:	runner.exitcode –
on non-timeout.




	Return type:	int




	Raises:	
	scriptharness.exceptions.ScriptHarnessFatal –
on KeyboardInterrupt

	scriptharness.exceptions.ScriptHarnessTimeout –
on output_timeout or
max_timeout.

















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.script module

Scripts control the running of Actions.


	
scriptharness.script.LOGGER_NAME

	str

logging.Logger name to use






	
scriptharness.script.LISTENER_PHASES

	tuple

valid phases for Script.add_listener()






	
scriptharness.script.ALL_PHASES

	tuple

valid phases for build_context()






	
scriptharness.script.PRE_RUN

	str

the pre-run phase constant






	
scriptharness.script.POST_RUN

	str

the post-run phase constant






	
scriptharness.script.PRE_ACTION

	str

the pre-action phase constant






	
scriptharness.script.POST_ACTION

	str

the post-action phase constant






	
scriptharness.script.RUN_ACTION

	str

the run-action phase constant






	
class scriptharness.script.Context(script, config, logger, action, phase)

	Bases: tuple

This is a namedtuple passed to each
listener and action function so they can reference the config, logger, etc.
easily.  It contains pointers to the Script, config, logger, and phase.
During action phases it also contains a pointer to the Action; during other
phases, Context.action is None.


	
__getnewargs__()

	Return self as a plain tuple.  Used by copy and pickle.






	
__getstate__()

	Exclude the OrderedDict from pickling






	
__repr__()

	Return a nicely formatted representation string






	
action

	Alias for field number 3






	
config

	Alias for field number 1






	
logger

	Alias for field number 2






	
phase

	Alias for field number 4






	
script

	Alias for field number 0










	
class scriptharness.script.Script(actions, template, name=u'root', **kwargs)

	Bases: object

This maintains the context of the config + actions.

In general there is a single Script object per run, but the intent is to
allow for parallel processing by instantiating multiple Script objects when
it makes sense.


	
config

	LoggingDict

the config for the script






	
actions

	tuple

Action objects to run.






	
name

	string

The name of the script






	
listeners

	dict

Callbacks for run().  Listener functions can be
set for each of LISTENER_PHASES.






	
logger

	logging.Logger

the logger for the script






	
add_listener(listener, phase, action_names=None)

	Add a callback for a specific script phase.

For pre and post_run, run at the beginning and end of the script,
respectively.

For pre and post_action, run at the beginning and end of actions,
respectively.  If action_names are specified, only run before/after
those action(s).





	Parameters:	
	listener (function) – Function to call at the right time.

	phase (str) – When to run the function.  Choices in LISTENER_PHASES

	action_names (iterable) – for pre/post action phase listeners,
only run before/after these action(s).














	
build_config(template, cmdln_args=None, initial_config=None)

	Create self.config from the parsed args.

If –dump-config is in the commandline arguments, the script will
dump the config to screen and disk, and exit.





	Parameters:	
	template (ConfigTemplate) – template to parse and validate
the config.

	cmdln_args (Optional[tuple]) – override the commandline args

	initial_config (Optional[dict]) – initial config dict to apply.






	Returns:	parsed_args from parse_args()












	
config = None

	




	
dict_to_config(config)

	Convert the config dict to a LoggingDict.

This method is mainly here for subclassing; otherwise it could have
easily stayed part of self.build_config().






	
end_message()

	Log a message at the end of run()

Split out for subclassing; the string may end up moving elsewhere
for localizability.






	
get_logger()

	Get a logger to log messages.

This is not strictly needed, as python’s logging module will
keep track of these loggers.

However, if we support structured logging as well as python logging,
get_logger() may return one or the other depending on config.

This method may end up moving to the scriptharness module, and tracked
in ScriptManager.





	Returns:	logging.Logger object.










	
log_enabled_actions()

	Log enabled actions.






	
run()

	Run all enabled actions.






	
run_action(action)

	Run a specific action.





	Parameters:	(Action object). (action) – 




	Raises:	
	scriptharness.exceptions.ScriptHarnessFatal –
when the Action

	raises ScriptHarnessFatal, this method re-raises. –














	
save_config()

	Save config to disk.






	
start_message()

	Log a message at the end of __init__()

Split out for subclassing; the string may end up moving elsewhere
for localizability.






	
verify_actions(actions)

	Make sure actions consists of Action objects, with no duplicate
names.

Then set self.actions to a namedtuple so we can find each action
by name easily.





	Parameters:	actions (list of Action objects) – these are passed from __init__().














	
class scriptharness.script.StrictScript(*args, **kwargs)

	Bases: scriptharness.script.Script

A subclass of Script that uses a ReadOnlyDict for config, and locks
its attributes.


	As for naming, there were the following choices:

	
	Locking sounds like Logging;

	ReadOnlyScript is a misnomer;

	StrictScript is a tongue-twister.








	
_lock

	bool

Similar to the ReadOnlyDict _lock.  Once set,
__setattr__ will raise if any attributes are changed/set.






	
dict_to_config(config)

	Set self.config to a ReadOnlyDict and lock.






	
pre_config_lock()

	Stub method for subclassing.






	
run()

	








	
scriptharness.script.build_context(script, phase, action=None)

	Build context for functions called by Actions.





	Parameters:	
	script (Script) – The calling Script

	phase (str) – The current script phase (one of ALL_PHASES)

	action (Optional[Action]) – The active Action, if applicable.






	Raises:	scriptharness.exceptions.ScriptHarnessException –
if there is an invalid
phase.




	Returns:	scriptharness.script.Context namedtuple.












	
scriptharness.script.enable_actions(parsed_args, action_list)

	If parsed_args has action-related options, enable/disable actions
as appropriate.





	Parameters:	
	(argparse Namespace) (parsed_args) – 

	(list of Actions) (action_list) – 














	
scriptharness.script.save_config(config, path)

	Save the configuration file to path as json.





	Parameters:	
	config (dict) – The config to save

	path (str) – The path to write the config to

















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.status module

Statuses for Commands and Actions.


	
scriptharness.status.SUCCESS

	int

Constant for Action or Command.history[‘status’]






	
scriptharness.status.ERROR

	int

Constant for Action or Command.history[‘status’]






	
scriptharness.status.FATAL

	int

Constant for Action or Command.history[‘status’]









          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.structures module

Data structures for configs.


	There are two config dict models here:

	
	LoggingDict logs any changes to the dict or its children.  When debugging,
config changes will be marked in the log.  This is the default model.

	ReadOnlyDict recursively locks the dictionary.  This is to aid in debugging;
one can assume the config hasn’t changed from the moment of locking.
This is the original mozharness model.








	
scriptharness.structures.DEFAULT_LEVEL

	int

the default logging level to set






	
scriptharness.structures.DEFAULT_LOGGER_NAME

	str

the default logger name to use






	
scriptharness.structures.QUOTES

	tuple

the order of quotes to use for key logging






	
scriptharness.structures.LOGGING_STRINGS

	dict

a dict of strings to use for logging, for easier
unittesting and potentially for future localization.






	
scriptharness.structures.MUTED_LOGGING_STRINGS

	dict

a dict of strings to use for logging when
the values in the list/dict shouldn’t be logged






	
scriptharness.structures.SUPPORTED_LOGGING_TYPES

	dict

a non-logging to logging class map, e.g.
dict: LoggingDict.  Not currently supporting sets or collections.






	
class scriptharness.structures.LockedTuple

	Bases: tuple

A tuple with its children recursively locked.

Tuples are read-only by nature, but we need to be able to recursively lock
the contents of the tuple, since the tuple can contain dicts or lists.

Taken straight from mozharness.


	
__deepcopy__(memo)

	Return a list on deepcopy.










	
class scriptharness.structures.LoggingClass

	Bases: object

General logging methods for the Logging* classes to subclass.


	
level

	int

the logging level for changes






	
logger_name

	str

the logger name to use






	
name

	str

the name of the class for logs






	
parent

	str

the name of the parent, if applicable, for logs






	
ancestor_child_list(child_list=None)

	Get the original ancestor of self, and the descending, linear list
of descendents’ names leading up to (and including) self.





	Parameters:	child_list (list, automatically generated) – in a multi-level nested
Logging* class, generate the list of children’s names. This list
will be built by prepending our name and calling
ancestor_child_list() on self.parent.


	Returns:	(ancestor, child_list) –
for self.full_name and
self.log_change support


	Return type:	LoggingClass, list










	
full_name()

	Get the full name of self.

This will call self.ancestor_child_list to get the original ancestor +
all the names of its descendents up to and including self, then
build the name from that.





	Parameters:	
	ancestor (Optional[LoggingClass]) – specify the ancestor

	child_list (Optional[list]) – a list of descendents’ names, in order






	Returns:	name –
the full name of self.




	Return type:	string












	
items()

	Return dict.items() for dicts, and enumerate(self) for lists+tuples.

This both simplifies recursively_set_parent() and silences pylint
complaining that LoggingClass doesn’t have an items() method.

The main negative here might be adding an attr items to non-dict
data types.






	
level = None

	




	
log_change(message, repl_dict=None)

	Log a change to self.





	Parameters:	message (str) – The message to log.










	
logger_name = None

	




	
name = None

	




	
parent = None

	




	
recursively_set_parent(name=None, parent=None)

	Recursively set name + parent.

If our LoggingDict is a multi-level nested Logging* instance, then
seeing a log message that something in one of the Logging* instances
has changed can be confusing.  If we know that it’s
grandparent[parent][self][child] that has changed, then the log
message is helpful.

For each child, set name automatically.  For dicts, the name is the
key.  For everything else, the name is the index.





	Parameters:	
	name (Optional[str]) – set self.name, for later logging purposes.
Defaults to None.

	parent (Optional[Logging*]) – set self.parent, for logging purposes.
Defaults to None.


















	
class scriptharness.structures.LoggingDict(items, level=20, muted=False, logger_name=u'scriptharness.data_structures')

	Bases: scriptharness.structures.LoggingClass, dict

A dict that logs any changes, as do its children.


	
level

	int

the logging level for changes






	
logger_name

	str

the logger name to use






	
muted

	bool

whether our logging messages are muted






	
strings

	dict

a dict of strings to use for messages






	
__deepcopy__(memo)

	Return a dict on deepcopy()






	
child_set_parent(key)

	When the dict changes, we can just target the specific changed
children.  Very simple wrapper method.





	Parameters:	key (str) – the dict key to the child value.










	
clear()

	




	
log_update(key, value)

	Helper method for update(): log one key/value pair at a time.





	Parameters:	
	key (str) – key to update

	value (any) – value to set






	Returns:	key (str) if it doesn’t exist in self, else None












	
pop(key, default=None)

	




	
popitem()

	




	
setdefault(key, default=None)

	




	
update(args)

	








	
class scriptharness.structures.LoggingList(items, level=20, muted=False, logger_name=u'scriptharness.data_structures')

	Bases: scriptharness.structures.LoggingClass, list

A list that logs any changes, as do its children.


	
level

	int

the logging level for changes






	
logger_name

	str

the logger name to use






	
muted

	bool

whether our logging messages are muted






	
strings

	dict

a dict of strings to use for messages






	
__deepcopy__(memo)

	Return a list on deepcopy.






	
append(item)

	




	
child_set_parent(position=0)

	When the list changes, we either want to change all of the
children’s names (which correspond to indeces) or a subset of
[position:]






	
extend(item)

	




	
insert(position, item)

	




	
log_self()

	Log the current list.

Since some methods insert values or rearrange them, it’ll be easier to
debug things if we log the list after those operations.






	
pop(position=None)

	




	
remove(item)

	




	
reverse()

	




	
sort(*args, **kwargs)

	








	
class scriptharness.structures.LoggingTuple

	Bases: scriptharness.structures.LoggingClass, tuple

A tuple whose children log any changes.


	
__deepcopy__(memo)

	Return a tuple on deepcopy.










	
class scriptharness.structures.ReadOnlyDict(*args, **kwargs)

	Bases: dict

A dict that is lockable.  When locked, any changes raise exceptions.

Slightly modified version of mozharness.base.config.ReadOnlyDict,
largely for pylint.


	
_lock

	bool

When locked, the dict is read-only and cannot be unlocked.






	
__deepcopy__(memo)

	Create an unlocked ReadOnlyDict on deepcopy()






	
clear(*args)

	




	
lock()

	Recursively lock the dictionary.






	
pop(*args)

	




	
popitem(*args)

	




	
setdefault(*args)

	




	
update(*args)

	








	
scriptharness.structures.add_logging_to_obj(item, **kwargs)

	Recursively add logging to all contents of a LoggingDict.

Any children of supported types will also have logging enabled.
Currently supported:: list, tuple, dict.





	Parameters:	item (object) – a child of a LoggingDict.


	Returns:	A logging version of item, when applicable, or item.










	
scriptharness.structures.get_strings(instance_type, muted=False)

	Get the strings for LoggingClass instance, muted or unmuted





	Parameters:	
	instance (obj) – LoggingClass instance or ‘list’ or ‘dict’

	muted (Optional[bool]) – return the MUTED_LOGGING_STRINGS strings if True














	
scriptharness.structures.is_logging_class(item)

	Determine if a class is one of the Logging* classes.





	Parameters:	item (object) – the object to check.










	
scriptharness.structures.iterate_pairs(data)

	Iterate over pairs of a data structure.

Usage:: for key, value in iterate_pairs(data_structure):

:param data: a dict, iterable-of-iterable pairs

















	
scriptharness.structures.make_immutable(item)

	Recursively lock all contents of a ReadOnlyDict.

Any children of supported types will also be locked.
Currently supported:: list, tuple, dict.

and we locked r on a shallow level, we could still r[‘b’].append() or
r[‘c’][‘key2’] = ‘value2’.  So to avoid that, we need to recursively
lock r via make_immutable.





	Parameters:	item (object) – a child of a ReadOnlyDict.


	Returns:	A locked version of item, when applicable, or item.













          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.unicode module

Scriptharness unicode compatibility.

Once scriptharness drops python 2.x support, this module can go away.


	
scriptharness.unicode.to_unicode(obj, encoding=u'utf-8')

	Encode a string as unicode in python2.

http://farmdev.com/talks/unicode/





	Parameters:	
	obj (str) – the string to encode

	encoding (Optional[str]) – the encoding to use.  Defaults to ‘utf-8’.






	Returns:	obj –
the encoded string




	Return type:	unicode















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	scriptharness package 
 
      

    


    
      
          
            
  
scriptharness.version module

Deal with the scriptharness version in semver format.

However, since writing this I’ve discovered that setuptools and sphinx don’t
accept all semver formatted versions.  It’s not clear if this will go away.

When called as a script, this will update ../version.json with the appropriate
version info.


	
scriptharness.version.__version__

	tuple

semver version - three integers and an optional string.






	
scriptharness.version.__version_string__

	str

semver version in string format.






	
scriptharness.version.get_version_string(version)

	Translate a version tuple into a string.

Specify the __version__ as a tuple for more precise comparisons, and
translate it to __version_string__ for when that’s needed.

This function exists primarily for easier unit testing.





	Parameters:	version (tuple) – three ints and an optional string.


	Returns:	version_string –
the tuple translated into a string per semver.org


	Return type:	str










	
scriptharness.version.write_version(name=None, path=None)

	Write the version info to ../version.json, for setup.py





	Parameters:	
	name (Optional[str]) – this is for the write_version(name=__name__)
below.  That’s one way to both follow the
if __name__ == '__main__': convention but also allow for full
coverage without ignoring parts of the file.

	path (Optional[str]) – the path to write the version json to.  Defaults
to ../version.json

















          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Scriptharness 0.2.0 Release Notes





	date:	2015/06/21






Highlights

This release adds Command and run(), ParsedCommand and parse(), and Output, get_output(), and get_text_output() with output_timeout and max_timeout support.  ParsedCommand supports context lines (see OutputBuffer and context lines).

It also adds ConfigTemplates, which allow for specifying what a well-formed configuration looks like for a script, as well as config validation.




What’s New


	More ways to enable and disable actions.  Now, in addition to --actions, there’s --add-actions, --skip-actions, and --action-group to change the set of default actions to run.  (See Enabling and Disabling Actions.)



	Added Command object with cross-platform output_timeout and max_timeout support, with a run() wrapper function for easier use.  This is for running external tools with timeouts.  (See Command and run().)



	Added ScriptHarnessTimeout exception








	Added ParsedCommand subclass of Command.  Also added a parse() wrapper function for easier use.  This is for running external tools, and parsing the output of those tools to detect errors. (See ParsedCommand and parse().)



	Added ErrorList, OutputParser objects for ParsedCommand error parsing.  (See ErrorLists and OutputParser.)

	Added OutputBuffer object for ParsedCommand context lines support.  (See OutputBuffer and context lines.)








	Added Output object with cross-platform output_timeout and max_timeout support.  Also added get_output(), and get_text_output() wrapper functions for easier use.  This is for capturing the output of an external tool for later use.  (See Output, get_output(), and get_text_output().)



	Added ConfigVariable and ConfigTemplate objects for configuration definition and validation support.  See ConfigTemplates.



	Added documentation.



	Script.actions is now a namedtuple



	test_config.py no longer hardcodes port 8001.



	Split a number of modules out.



	100% coverage



	pylint 10.00



	Current issues [https://github.com/scriptharness/python-scriptharness/issues] are tracked on GitHub.






Note

If you’ve cloned python-scriptharness 0.1.0, you may need to remove the scriptharness/commands directory, as it will conflict with the new scriptharness/commands.py module.






Historical Release Notes



	Scriptharness 0.2.0 Release Notes

	Scriptharness 0.1.0 Release Notes











          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	Scriptharness 0.2.0 Release Notes 
 
      

    


    
      
          
            
  
Scriptharness 0.2.0 Release Notes





	date:	2015/06/21






Highlights

This release adds Command and run(), ParsedCommand and parse(), and Output, get_output(), and get_text_output() with output_timeout and max_timeout support.  ParsedCommand supports context lines (see OutputBuffer and context lines).

It also adds ConfigTemplates, which allow for specifying what a well-formed configuration looks like for a script, as well as config validation.




What’s New


	More ways to enable and disable actions.  Now, in addition to --actions, there’s --add-actions, --skip-actions, and --action-group to change the set of default actions to run.  (See Enabling and Disabling Actions.)



	Added Command object with cross-platform output_timeout and max_timeout support, with a run() wrapper function for easier use.  This is for running external tools with timeouts.  (See Command and run().)



	Added ScriptHarnessTimeout exception








	Added ParsedCommand subclass of Command.  Also added a parse() wrapper function for easier use.  This is for running external tools, and parsing the output of those tools to detect errors. (See ParsedCommand and parse().)



	Added ErrorList, OutputParser objects for ParsedCommand error parsing.  (See ErrorLists and OutputParser.)

	Added OutputBuffer object for ParsedCommand context lines support.  (See OutputBuffer and context lines.)








	Added Output object with cross-platform output_timeout and max_timeout support.  Also added get_output(), and get_text_output() wrapper functions for easier use.  This is for capturing the output of an external tool for later use.  (See Output, get_output(), and get_text_output().)



	Added ConfigVariable and ConfigTemplate objects for configuration definition and validation support.  See ConfigTemplates.



	Added documentation.



	Script.actions is now a namedtuple



	test_config.py no longer hardcodes port 8001.



	Split a number of modules out.



	100% coverage



	pylint 10.00



	Current issues [https://github.com/scriptharness/python-scriptharness/issues] are tracked on GitHub.






Note

If you’ve cloned python-scriptharness 0.1.0, you may need to remove the scriptharness/commands directory, as it will conflict with the new scriptharness/commands.py module.









          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	scriptharness 0.2.0 

          	Scriptharness 0.2.0 Release Notes 
 
      

    


    
      
          
            
  
Scriptharness 0.1.0 Release Notes





	date:	2015/05/25





This is the first scriptharness release.


What’s New


	python 2.7, 3.2-3.5 support

	unicode support on 2.7 (3.x gets it for free)

	no more mixins

	no more query_abs_dirs()

	argparse instead of optparse

	virtualenv instead of clone-and-run

	because of virtualenv model, requests instead of urllib2

	LoggingDict to allow and log config changes

	LogMethod decorator to add simple logging to any function or method

	ScriptManager object like logging.Manager

	Action functions can be module-level functions

	multiple Script model, though running multiple Scripts is currently untested

	choice of StrictScript for ReadOnlyDict usage

	all preflight and postflight functions are listeners

	quickstart.py for faster learning curve

	readthedocs + full docstrings for faster learning curve

	100% coverage

	pylint 10.00






Known Issues


	run_command() and get_output_from_command() are not yet ported

	test_config.py hardcodes port 8001

	1 broken test on Windows python 2.7: cgi httpserver call downloads cgi script

	5 disabled tests on Windows python 3.4





	windows console doesn’t print or input Unicode http://bugs.python.org/issue1602

	subprocess failing in GUI applications on Windows http://bugs.python.org/issue3905







	currently only one way to enable/disable actions: –actions









          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            
  
Scriptharness

Scriptharness is a framework for writing scripts.  There are three core principles: full logging, flexible configuration, and modular actions.  The goal of full logging is to be able to debug problems purely through the log.  The goal of flexible configuration is to make each script useful in a variety of contexts and environments.  The goals of modular actions are a) faster development feedback loops and b) different workflows for different usage requirements.


Full logging

Many scripts log.  However, logging can happen sporadically, and it’s generally acceptable to run a number of actions silently (e.g., os.chdir() will happily change directories with no indication in the log).  In full logging, the goal is to be able to debug bustage purely through the log.

At the outset, the user can add a generic logging wrapper to any method with minimal fuss.  As scriptharness matures, there will be more customized wrappers to use as drop-in replacements for previously-non-logging methods.




Flexible configuration

Many scripts use some sort of configuration, whether hardcoded, in a file, or through the command line.  A family of scripts written by the same author(s) may have similar configuration options and patterns, but often times they vary wildly from script to script.

By offering a standard way of accepting configuration options, and then exporting that config to a file for later debugging or replication, scriptharness makes things a bit neater and cleaner and more familiar between scripts.

By either disallowing runtime configuration changes, or by explicitly logging them, scriptharness removes some of the guesswork when debugging bustage.




Modular actions

Scriptharness actions allow for:


	faster development feedback loops.  No need to rerun the entirety of a long-running script when trying to debug a single action inside that script.

	different workflows for different usage requirements, such as running standalone versus running in cloud infrastructure



This is in the same spirit of other frameworks that allow for discrete targets, tasks, or actions: make, maven, ansible, and many more.




Running unit tests


Linux and OS X

# By default, this will look for python 2.7 + 3.{3,4,5}.
# You can run |tox -e ENV| to run a specific env, e.g. |tox -e py27|
pip install tox
tox
# alternately, ./run_tests.sh








Windows

# By default, this will look for python 2.7 + 3.4
# You can run |tox -c tox_win.ini -e ENV| to run a specific env, e.g. |tox -c tox_win.ini -e py27|
pip install tox
tox -c win.ini













          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            

   Python Module Index


   
   s
   


   
     			

     		
       s	

     
       	[image: -]
       	
       scriptharness	
       

     
       	
       	
       scriptharness.actions	
       

     
       	
       	
       scriptharness.commands	
       

     
       	
       	
       scriptharness.config	
       

     
       	
       	
       scriptharness.errorlists	
       

     
       	
       	
       scriptharness.exceptions	
       

     
       	
       	
       scriptharness.log	
       

     
       	
       	
       scriptharness.os	
       

     
       	
       	
       scriptharness.process	
       

     
       	
       	
       scriptharness.script	
       

     
       	
       	
       scriptharness.status	
       

     
       	
       	
       scriptharness.structures	
       

     
       	
       	
       scriptharness.unicode	
       

     
       	
       	
       scriptharness.version	
       

   



          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	scriptharness 0.2.0 
 
      

    


    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


_


  	
      
  	__call__() (scriptharness.log.LogMethod method)
  


      
  	__deepcopy__() (scriptharness.structures.LockedTuple method)
  


      	
        
  	(scriptharness.structures.LoggingDict method)
  


        
  	(scriptharness.structures.LoggingList method)
  


        
  	(scriptharness.structures.LoggingTuple method)
  


        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


      
  	__getnewargs__() (scriptharness.script.Context method)
  


      
  	__getstate__() (scriptharness.script.Context method)
  


      
  	__repr__() (scriptharness.script.Context method)
  


  

  	
      
  	__unicode__() (scriptharness.exceptions.ScriptHarnessBaseException method)
  


      
  	__version__ (in module scriptharness.version)
  


      
  	__version_string__ (in module scriptharness.version)
  


      
  	_lock (scriptharness.script.StrictScript attribute)
  


      	
        
  	(scriptharness.structures.ReadOnlyDict attribute)
  


      


  





A


  	
      
  	Action (class in scriptharness.actions)
  


      
  	action (scriptharness.script.Context attribute)
  


      
  	action_config_template() (in module scriptharness.config)
  


      
  	actions (scriptharness.script.Script attribute)
  


      
  	add_argument() (scriptharness.config.ConfigTemplate method)
  


      	
        
  	(scriptharness.config.ConfigVariable method)
  


      


      
  	add_buffer() (scriptharness.log.OutputParser method)
  


      
  	add_line() (scriptharness.commands.Command method)
  


      	
        
  	(scriptharness.commands.ParsedCommand method)
  


        
  	(scriptharness.log.OutputBuffer method)
  


        
  	(scriptharness.log.OutputParser method)
  


      


  

  	
      
  	add_listener() (scriptharness.script.Script method)
  


      
  	add_logging_to_obj() (in module scriptharness.structures)
  


      
  	add_variable() (scriptharness.config.ConfigTemplate method)
  


      
  	all_options (scriptharness.config.ConfigTemplate attribute)
  


      
  	ALL_PHASES (in module scriptharness.script)
  


      
  	ancestor_child_list() (scriptharness.structures.LoggingClass method)
  


      
  	append() (scriptharness.structures.LoggingList method)
  


  





B


  	
      
  	build_config() (in module scriptharness.config)
  


      	
        
  	(scriptharness.script.Script method)
  


      


  

  	
      
  	build_context() (in module scriptharness.script)
  


  





C


  	
      
  	check_context_lines() (in module scriptharness.errorlists)
  


      
  	check_ignore() (in module scriptharness.errorlists)
  


      
  	check_output() (in module scriptharness.commands)
  


      
  	child_set_parent() (scriptharness.structures.LoggingDict method)
  


      	
        
  	(scriptharness.structures.LoggingList method)
  


      


      
  	cleanup() (scriptharness.commands.Output method)
  


      
  	clear() (scriptharness.structures.LoggingDict method)
  


      	
        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


      
  	Command (class in scriptharness.commands)
  


  

  	
      
  	command (scriptharness.commands.Command attribute)
  


      
  	command_subprocess() (in module scriptharness.process)
  


      
  	config (scriptharness.script.Context attribute)
  


      	
        
  	(scriptharness.script.Script attribute), [1]
  


      


      
  	config_variables (scriptharness.config.ConfigTemplate attribute)
  


      
  	ConfigTemplate (class in scriptharness.config)
  


      
  	ConfigVariable (class in scriptharness.config)
  


      
  	Context (class in scriptharness.script)
  


  





D


  	
      
  	default_config (scriptharness.log.LogMethod attribute), [1]
  


      
  	DEFAULT_CONFIG_DEFINITION (in module scriptharness.config)
  


      
  	DEFAULT_DATEFMT (in module scriptharness.log)
  


      
  	DEFAULT_FMT (in module scriptharness.log)
  


      
  	DEFAULT_LEVEL (in module scriptharness.log)
  


      	
        
  	(in module scriptharness.structures)
  


      


      
  	DEFAULT_LOGGER_NAME (in module scriptharness.structures)
  


      
  	defaults() (scriptharness.config.ConfigTemplate method)
  


  

  	
      
  	definition (scriptharness.config.ConfigVariable attribute)
  


      
  	detect_error_cb (scriptharness.commands.Command attribute)
  


      
  	detect_errors() (in module scriptharness.commands)
  


      
  	detect_parsed_errors() (in module scriptharness.commands)
  


      
  	dict_to_config() (scriptharness.script.Script method)
  


      	
        
  	(scriptharness.script.StrictScript method)
  


      


      
  	download_url() (in module scriptharness.config)
  


      
  	dump_buffer() (scriptharness.log.OutputBuffer method)
  


  





E


  	
      
  	enable_actions() (in module scriptharness.script)
  


      
  	enabled (scriptharness.actions.Action attribute)
  


      
  	encoding (scriptharness.log.UnicodeFormatter attribute), [1]
  


      
  	end_message() (scriptharness.script.Script method)
  


  

  	
      
  	ERROR (in module scriptharness.status)
  


      
  	ErrorList (class in scriptharness.errorlists)
  


      
  	exactly_one() (in module scriptharness.errorlists)
  


      
  	extend() (scriptharness.structures.LoggingList method)
  


  





F


  	
      
  	FATAL (in module scriptharness.status)
  


      
  	finish_process() (scriptharness.commands.Command method)
  


      	
        
  	(scriptharness.commands.Output method)
  


      


      
  	fix_env() (scriptharness.commands.Command static method)
  


  

  	
      
  	format() (scriptharness.log.UnicodeFormatter method)
  


      
  	full_name() (scriptharness.structures.LoggingClass method)
  


      
  	function (scriptharness.actions.Action attribute)
  


  





G


  	
      
  	get_actions() (in module scriptharness)
  


      
  	get_actions_from_list() (in module scriptharness)
  


      
  	get_config() (in module scriptharness)
  


      
  	get_config_template() (in module scriptharness)
  


      	
        
  	(in module scriptharness.config)
  


      


      
  	get_console_handler() (in module scriptharness.log)
  


      
  	get_file_handler() (in module scriptharness.log)
  


      
  	get_filename_from_url() (in module scriptharness.config)
  


      
  	get_formatter() (in module scriptharness.log)
  


      
  	get_function_by_name() (in module scriptharness.actions)
  


  

  	
      
  	get_list_actions_string() (in module scriptharness.config)
  


      
  	get_logger() (in module scriptharness)
  


      	
        
  	(scriptharness.script.Script method)
  


      


      
  	get_output() (in module scriptharness.commands)
  


      	
        
  	(scriptharness.commands.Output method)
  


      


      
  	get_parser() (scriptharness.config.ConfigTemplate method)
  


      
  	get_script() (in module scriptharness)
  


      
  	get_strings() (in module scriptharness.structures)
  


      
  	get_text_output() (in module scriptharness.commands)
  


      
  	get_version_string() (in module scriptharness.version)
  


  





H


  	
      
  	history (scriptharness.actions.Action attribute)
  


      	
        
  	(scriptharness.commands.Command attribute)
  


      


  





I


  	
      
  	insert() (scriptharness.structures.LoggingList method)
  


      
  	is_logging_class() (in module scriptharness.structures)
  


      
  	is_url() (in module scriptharness.config)
  


  

  	
      
  	items() (scriptharness.config.ConfigTemplate method)
  


      	
        
  	(scriptharness.structures.LoggingClass method)
  


      


      
  	iterate_pairs() (in module scriptharness.structures)
  


  





K


  	
      
  	kill_proc_tree() (in module scriptharness.process)
  


      
  	kill_runner() (in module scriptharness.process)
  


  

  	
      
  	kwargs (scriptharness.commands.Command attribute)
  


  





L


  	
      
  	level (scriptharness.structures.LoggingClass attribute), [1]
  


      	
        
  	(scriptharness.structures.LoggingDict attribute)
  


        
  	(scriptharness.structures.LoggingList attribute)
  


      


      
  	LISTENER_PHASES (in module scriptharness.script)
  


      
  	listeners (scriptharness.script.Script attribute)
  


      
  	lock() (scriptharness.structures.ReadOnlyDict method)
  


      
  	LockedTuple (class in scriptharness.structures)
  


      
  	log_change() (scriptharness.structures.LoggingClass method)
  


      
  	log_enabled_actions() (scriptharness.script.Script method)
  


      
  	log_env() (scriptharness.commands.Command method)
  


      
  	log_self() (scriptharness.structures.LoggingList method)
  


      
  	log_start() (scriptharness.commands.Command method)
  


  

  	
      
  	log_update() (scriptharness.structures.LoggingDict method)
  


      
  	logger (scriptharness.commands.Command attribute)
  


      	
        
  	(scriptharness.script.Context attribute)
  


        
  	(scriptharness.script.Script attribute)
  


      


      
  	LOGGER_NAME (in module scriptharness.actions)
  


      	
        
  	(in module scriptharness.commands)
  


        
  	(in module scriptharness.config)
  


        
  	(in module scriptharness.log)
  


        
  	(in module scriptharness.script)
  


      


      
  	logger_name (scriptharness.actions.Action attribute)
  


      	
        
  	(scriptharness.structures.LoggingClass attribute), [1]
  


        
  	(scriptharness.structures.LoggingDict attribute)
  


        
  	(scriptharness.structures.LoggingList attribute)
  


      


      
  	LOGGING_STRINGS (in module scriptharness.structures)
  


      
  	LoggingClass (class in scriptharness.structures)
  


      
  	LoggingDict (class in scriptharness.structures)
  


      
  	LoggingList (class in scriptharness.structures)
  


      
  	LoggingTuple (class in scriptharness.structures)
  


      
  	LogMethod (class in scriptharness.log)
  


  





M


  	
      
  	MAKE_ERROR_LIST (in module scriptharness.errorlists)
  


      
  	make_immutable() (in module scriptharness.structures)
  


      
  	make_parent_dir() (in module scriptharness.os)
  


  

  	
      
  	makedirs() (in module scriptharness.os)
  


      
  	muted (scriptharness.structures.LoggingDict attribute)
  


      	
        
  	(scriptharness.structures.LoggingList attribute)
  


      


      
  	MUTED_LOGGING_STRINGS (in module scriptharness.structures)
  


  





N


  	
      
  	name (scriptharness.actions.Action attribute)
  


      	
        
  	(scriptharness.config.ConfigVariable attribute)
  


        
  	(scriptharness.script.Script attribute)
  


        
  	(scriptharness.structures.LoggingClass attribute), [1]
  


      


  





O


  	
      
  	OPTION_REGEX (in module scriptharness.config)
  


      
  	Output (class in scriptharness.commands)
  


  

  	
      
  	OutputBuffer (class in scriptharness.log)
  


      
  	OutputParser (class in scriptharness.log)
  


  





P


  	
      
  	parent (scriptharness.structures.LoggingClass attribute), [1]
  


      
  	parse() (in module scriptharness.commands)
  


      
  	parse_args() (in module scriptharness.config)
  


      
  	parse_config_file() (in module scriptharness.config)
  


      
  	ParsedCommand (class in scriptharness.commands)
  


      
  	parser (scriptharness.config.ConfigTemplate attribute)
  


      
  	phase (scriptharness.script.Context attribute)
  


      
  	pop() (scriptharness.structures.LoggingDict method)
  


      	
        
  	(scriptharness.structures.LoggingList method)
  


        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


      
  	pop_buffer() (scriptharness.log.OutputBuffer method)
  


      
  	popitem() (scriptharness.structures.LoggingDict method)
  


      	
        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


  

  	
      
  	POST_ACTION (in module scriptharness.script)
  


      
  	post_context_lines (scriptharness.errorlists.ErrorList attribute)
  


      
  	post_func() (scriptharness.log.LogMethod method)
  


      
  	POST_RUN (in module scriptharness.script)
  


      
  	PRE_ACTION (in module scriptharness.script)
  


      
  	pre_config_lock() (scriptharness.script.StrictScript method)
  


      
  	pre_context_lines (scriptharness.errorlists.ErrorList attribute)
  


      
  	pre_func() (scriptharness.log.LogMethod method)
  


      
  	PRE_RUN (in module scriptharness.script)
  


      
  	prepare_simple_logging() (in module scriptharness)
  


      	
        
  	(in module scriptharness.log)
  


      


  





Q


  	
      
  	QUOTES (in module scriptharness.structures)
  


  





R


  	
      
  	ReadOnlyDict (class in scriptharness.structures)
  


      
  	recursively_set_parent() (scriptharness.structures.LoggingClass method)
  


      
  	remove() (scriptharness.structures.LoggingList method)
  


      
  	remove_option() (scriptharness.config.ConfigTemplate method)
  


      
  	reverse() (scriptharness.structures.LoggingList method)
  


  

  	
      
  	run() (in module scriptharness.commands)
  


      	
        
  	(scriptharness.actions.Action method)
  


        
  	(scriptharness.commands.Command method)
  


        
  	(scriptharness.commands.Output method)
  


        
  	(scriptharness.script.Script method)
  


        
  	(scriptharness.script.StrictScript method)
  


      


      
  	RUN_ACTION (in module scriptharness.script)
  


      
  	run_action() (scriptharness.script.Script method)
  


      
  	run_function() (scriptharness.actions.Action method)
  


  





S


  	
      
  	save_config() (in module scriptharness.script)
  


      	
        
  	(scriptharness.script.Script method)
  


      


      
  	Script (class in scriptharness.script)
  


      
  	script (scriptharness.script.Context attribute)
  


      
  	scriptharness (module)
  


      
  	scriptharness.actions (module)
  


      
  	scriptharness.commands (module)
  


      
  	scriptharness.config (module)
  


      
  	scriptharness.errorlists (module)
  


      
  	scriptharness.exceptions (module)
  


      
  	scriptharness.log (module)
  


      
  	scriptharness.os (module)
  


      
  	scriptharness.process (module)
  


      
  	scriptharness.script (module)
  


      
  	scriptharness.status (module)
  


      
  	scriptharness.structures (module)
  


      
  	scriptharness.unicode (module)
  


      
  	scriptharness.version (module)
  


      
  	ScriptHarnessBaseException
  


      
  	ScriptHarnessError
  


  

  	
      
  	ScriptHarnessException
  


      
  	ScriptHarnessFatal
  


      
  	ScriptHarnessTimeout
  


      
  	set_action_class() (in module scriptharness)
  


      
  	set_repl_dict() (scriptharness.log.LogMethod method)
  


      
  	set_script_class() (in module scriptharness)
  


      
  	setdefault() (scriptharness.structures.LoggingDict method)
  


      	
        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


      
  	sort() (scriptharness.structures.LoggingList method)
  


      
  	SSH_ERROR_LIST (in module scriptharness.errorlists)
  


      
  	start_message() (scriptharness.script.Script method)
  


      
  	stderr (scriptharness.commands.Output attribute)
  


      
  	stdout (scriptharness.commands.Output attribute)
  


      
  	strict (scriptharness.errorlists.ErrorList attribute)
  


      
  	StrictScript (class in scriptharness.script)
  


      
  	STRINGS (in module scriptharness.actions)
  


      	
        
  	(in module scriptharness.commands)
  


        
  	(in module scriptharness.config)
  


      


      
  	strings (scriptharness.actions.Action attribute)
  


      	
        
  	(scriptharness.commands.Command attribute)
  


        
  	(scriptharness.commands.Output attribute)
  


        
  	(scriptharness.structures.LoggingDict attribute)
  


        
  	(scriptharness.structures.LoggingList attribute)
  


      


      
  	SUCCESS (in module scriptharness.status)
  


      
  	SUPPORTED_LOGGING_TYPES (in module scriptharness.structures)
  


  





T


  	
      
  	to_unicode() (in module scriptharness.unicode)
  


  





U


  	
      
  	UnicodeFormatter (class in scriptharness.log)
  


      
  	update() (scriptharness.config.ConfigTemplate method)
  


      	
        
  	(scriptharness.structures.LoggingDict method)
  


        
  	(scriptharness.structures.ReadOnlyDict method)
  


      


  

  	
      
  	update_buffer_levels() (scriptharness.log.OutputBuffer method)
  


      
  	update_dirs() (in module scriptharness.config)
  


  





V


  	
      
  	VALID_ARGPARSE_ACTIONS (in module scriptharness.config)
  


      
  	validate_config() (scriptharness.config.ConfigTemplate method)
  


      	
        
  	(scriptharness.config.ConfigVariable method)
  


      


      
  	validate_config_definition() (in module scriptharness.config)
  


  

  	
      
  	validate_error_list() (scriptharness.errorlists.ErrorList method)
  


      
  	verify_actions() (scriptharness.script.Script method)
  


      
  	verify_unicode() (in module scriptharness.errorlists)
  


  





W


  	
      
  	watch_command() (in module scriptharness.process)
  


      
  	watch_output() (in module scriptharness.process)
  


  

  	
      
  	write_version() (in module scriptharness.version)
  


  







          

      

      

    


    
         Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  _static/down.png





_static/comment-bright.png





_static/up.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		scriptharness 0.2.0 »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Aki Sasaki.
      Created using Sphinx 1.3.1.
    

  

_static/file.png





_static/down-pressed.png





_static/plus.png





_static/comment.png





_static/up-pressed.png





_static/minus.png





_static/ajax-loader.gif





_static/comment-close.png





